Все о белках биология


функции, синтез, строение, свойства, продукты богатые белком, виды, состав и норма в день

Содержание статьи:

  1. Что такое белок
  2. Виды белков
  3. Синтез белка
  4. Состав белков
  5. Свойства
  6. Функции белков
  7. Строение
  8. Переваривание белков
  9. Обмен белков в организме
  10. Продукты богатые белком
  11. Норма в день для организма
  12. Усваиваемость белка
  13. Вред белков

Белки – это важные компоненты, которые имеют большое значение для нормальной работы организма. Источниками этих веществ являются животные и растительные продукты. Чтобы белковые элементы полноценно усваивались организмом, необходимо правильно употреблять их.

Белки (белок)

Что такое белок

Белок - это органическое соединение, которое включает альфа-аминокислоты. Они соединяются в цепь пептидной связью. В живых организмах белковый состав определяется генетическим кодом. В процессе выработки этих веществ обычно принимает участие 20 аминокислот. Их сочетания создают белковые молекулы, которые отличатся своими свойствами.

Виды белков

Виды белков

Виды белков бывают следующие:

  1. Белки куриных яиц. Они усваиваются лучше всего и считаются эталонными. Всем известно, что яйца включают белок, который почти на 100 % состоит из альбумина, и желток.
  2. Казеин. При попадании в желудок вещество превращается в сгусток, который долгое время переваривается. Это обеспечивает невысокую скорость расщепления белка, что провоцирует стабильное снабжение организма аминокислотами.
  3. Белки молочной сыворотки. Такие компоненты расщепляются быстрее всего. Уровень аминокислот и пептидов в крови увеличивается уже в течение 1 часа после употребления таких продуктов. При этом кислотообразующая функция желудка остается неизменной.
  4. Соевые белки. Такие вещества имеют сбалансированный состав важных аминокислот. После употребления подобных продуктов снижается содержание холестерина. Потому такую пищу стоит есть людям с лишним весом. При этом главным минусом соевых белков считается наличие ингибитора пищеварительного фермента трипсина.
  5. Растительные белки. Такие вещества усваиваются человеческим организмом достаточно плохо. Их клетки обладают толстыми оболочками, которые не поддаются влиянию пищеварительного сока. Также проблемы с усвоением обусловлены наличием ингибиторов пищеварительных ферментов в отдельных растениях.
  6. Рыбный белок. Изолят рыбного белка достаточно медленно расщепляется до состояния аминокислот.

Синтез белка

Синтез белка

Синтез белка осуществляется в особых частицах – рибосомах.

Этот процесс происходит в несколько стадий:

  • активация аминокислот;
  • инициация белковой цепи;
  • элонгация;
  • терминация;
  • сворачивание и процессинг.

Состав белков

Состав белков

Состав белков представляет собой линейные полимеры, которые включают остатки α-L-аминокислот. Также в белковых молекулах могут присутствовать модифицированные аминокислотные остатки и составляющие неаминокислотной природы.

Аминокислоты обозначают сокращениями, включающими 1 или 3 буквы. Белки, которые имеют длину от 2 до нескольких десятков аминокислотных остатков, называют пептидами. Если наблюдается высокая степень полимеризации, их именуют белками. Однако такое деление считается достаточно условным.

Свойства белков

Свойства белков

Для белков характерны следующие свойства:

  1. Различная растворимость в воде. Белковые элементы, которые растворяются, приводят к формированию коллоидных растворов.
  2. Гидролиз. Под влиянием ферментов или растворов минеральных кислот разрушается первичное строение белка и формируется смесь аминокислот.
  3. Денатурация. Под этим термином понимают частичное или полное разрушение структуры белковой молекулы. Этот процесс может происходить под воздействием разных факторов – повышенных температур, растворов солей тяжелых металлов, кислот или щелочей, радиоактивного излучения, отдельных органических веществ.

Функции белков

 Рассмотрим детальнее ряд важных функций белков:

  1. Строительная. Такие вещества принимают участие в формировании клеток и внеклеточных элементов. Они присутствуют в составе мембранклеток, сухожилий, волос.
  2. Транспортная. Белковый компонент крови, который называется гемоглобином, присоединяет кислород и распространяет его в разные ткани и органы. После чего обратно переносит углекислый газ.
  3. Регуляторная. Гормоны белкового характера участвуют в обменных процессах. Инсулин отвечает за регуляцию содержания глюкозы в крови, обеспечивает выработку гликогена, повышает трансформацию углеводов в жиры.
  4. Защитная. При попадании в организм инородных объектов или микроорганизмов вырабатываются особенные белки – антитела. Они помогают связать и нейтрализовать антигены. Фибрин, который вырабатывается из фибриногена, останавливает кровотечения.
  5. Двигательная. Существуют особые сократительные белковые элементы. К ним относят актин и миозин. Эти веществаобеспечивают сокращение мышечных тканей.
  6. Сигнальная. В поверхностной клеточной мембране присутствуют белковые молекулы, которые могут менять третичную структуру под влиянием внешних факторов. Это помогает принимать сигналы извне и передавать в клетку команды.
  7. Запасающая. У животных белковые вещества обычно не запасаются. К исключениям относят яичный альбумин и казеин, который присутствует в молоке. При этом белки способствуют скоплению определенных веществ. Распад гемоглобина приводит к тому, что железо не выводится, а сохраняется. Благодаря этому формируется комплекс с ферритином.
  8. Энергетическая. Распад 1 г белка сопровождается синтезом 17,6 кДж энергии. Вначале белковые элементы распадаются до аминокислот, а затем – до конечных продуктов. В результате вырабатывается вода, аммиак и углекислый газ. При этом белки применяются в качестве источника энергии лишь в том случае, если остальные – израсходованы.
  9. Каталитическая. Это одна из наиболее важных функций белковых элементов. За нее отвечают ферменты, которые активизируют биохимические процессы в клеточных структурах.

Строение белков

Строение белков

Среди органических веществ белки, которые называются биополимерами, считаются самыми многочисленными. Они отличаются разнообразием. На долю этих веществ приходится 50-80 % сухой массы клетки.

Белковые молекулы отличаются большими размерами. Потому их нередко именуют макромолекулами. В строение белков входят углерод, водород, азот, кислород. Помимо этого, в них могут присутствовать сера, железо, фосфор.

Белки отличаются числом – от 100 до нескольких тысяч, составом, последовательностью мономеров. В качестве мономеров выступают аминокислоты.

Переваривание белков

Переваривание белков

Белки усваиваются в желудке и тонком кишечнике. Процесс переваривания представляет собой гидролитическое расщепление белков до аминокислот.

Он имеет определенные особенности:

  • протеолитические ферменты продуцируются в неактивном состоянии;
  • активирование наблюдается в просвете пищеварительного тракта за счет частичного протеолиза;
  • протеазы пищеварительного тракта характеризуются субстратной специфичностью – они могут относиться к эндопептидам или экзопептидазам.

Основным ферментом желудка, который расщепляет белки, считается пепси. Он синтезируется в неактивном состоянии и представляет собой профермент пепсиноген. Под воздействием соляной кислоты наблюдается частичный протеолиз пепсиногена. В результате появляется активная форма – пепсин.

Обмен белков в организме

Обмен белков в организме

Обмен белков в организме значительно сложнее, чем метаболизм липидов или углеводов. Жирные кислоты попадают в клетки почти в исходном виде, а углеводы – служат источником энергии. При этом основной строитель мышц претерпевает немало изменений в организме. На отдельных этапах белок преобразуется в углеводы. Как следствие, вырабатывается энергия.

Существует несколько этапов белкового обмена, для каждого из которых характерны определенные особенности:

  1. Попадание белков в организм. Под действием слюны происходит расщепление связей гликогена. Как следствие, формируется глюкоза, доступная для усвоения. Оставшиеся ферменты запечатываются. На этой стадии белки, которые присутствуют в продуктах, распадаютсяна отдельные элементы.Впоследствии они будут перевариваться.
  2. Переваривание. Под действием панкреатина и остальных ферментов наблюдается последующая денатурация до белков первого порядка. Организм способен получать аминокислоты исключительно из простейших белковых цепей. Для этого он вырабатывает кислоту. Это облегчает расщепление веществ.
  3. Расщепление на аминокислоты. Под действием клеток слизистых оболочек кишечника денатурированные белки попадают в кровь. Простой белок преобразуется организмом в аминокислоты.
  4. Расщепление до энергии. Под действием большого количества заменителей инсулина и ферментов для усваивания углеводов белок трансформируется в глюкозу. При нехватке энергии организм не выполняет денатурацию белка, а сразуегорасщепляет. В результате вырабатывается чистая энергия.
  5. Перераспределение аминокислот. Белковые элементы циркулируют в системном кровотоке и под действием инсулина попадают во все клетки. Как следствие, образуются требуемые аминокислотные связи. По мере распространения белков по организму происходит восстановление фрагментов мышечных элементов и структур, которые связаны со стимуляцией выработки, работой мозга, дальнейшей ферментацией.
  6. Образование новых белковых структур. Аминокислоты связываются с микроразрывами в мышцах и приводят к созданию новых тканей. Как следствие, наблюдается гипертрофия мышц. Аминокислоты в требуемом составе трансформируются в мышечно-белковую ткань.
  7. Обмен белков. При избытке таких структур под влиянием инсулина они снова проникают в систему кровообращения. Это приводит к формированию новых структур. При существенном напряжении в мышцах, длительном голодании или в период заболевания организм использует белки для компенсации недостатка аминокислот в остальных тканях.
  8. Перемещение липидных структур. Белки, которые соединяются в фермент липазу, способствуют перемещению и перевариванию с желчью полинасыщенных жирных кислот. Эти элементы принимают участие в перемещении жиров и выработке холестерина. С учетом состава аминокислот белки могут синтезироваться в полезный или вредный холестерин.
  9. Выведение окисленных продуктов. Использованные аминокислоты покидают организм с продуктами обмена. Мышцы, которые повреждаются вследствие нагрузок, тоже выводятся из организма.

Продукты богатые белком

Продукты богатые белком

Существует довольно много источников таких элементов. Животные продукты богатые белком, бывают следующие:

  1. Куриное мясо. 100 г продукта включает около 20 г белков. При этом такое мясо почти не содержит жира. Это актуально для людей, которые контролируют свой вес или занимаются спортом.
  2. Рыба. Самыми ценными источниками белка считаются тунец и лосось. Помимо этого, в продуктах имеются ценные кислоты омега-3, которые обеспечивают стабилизацию функций сердца и улучшают настроение.
  3. Свинина. В зависимости от жирности мяса в 100 г продукта может присутствовать 11-16 г белков. Также свинина включает витамины группы В.
  4. Яйца. В 1 яйце присутствует 6 г белка. Также продукт включает витамин В12 и холин.
  5. Говядина. На 100 г продукта приходится 19 г белков. Также говядина включает железо, карнитин и креатин

К растительным источникам белков стоит отнести следующее:

  1. Бобовые. Эти продукты включают большое количество белков. 100 г гороха содержит 23 г этих компонентов, а в сое присутствует 34 г белков.
  2. Орехи. Они представляют собой ценные источники белков и включают ненасыщенные жирные кислоты.
  3. Грибы. Эти продукты включают 2-5 % белков от общего количества. При этом есть сведения, что пищевые компоненты из грибов усваиваются с большим трудом.
  4. Гречка. В 100 г продукта присутствует 13 г белков. В гречке нет глютена, потому она вызывает аллергических реакций. При этом крупа включает фитонутриенты, которые сказываются на выработке инсулина и восстанавливают метаболизм.

Норма белка в день для организма

Норма белка в день для организма

Норма белка в день для организма взрослого человека составляет минимум 50 г в чистом виде, что соответствует 150 г белого мяса или рыбы. Люди, которые активно занимаются спортом и нацелены на развитие мышечных тканей, должны употреблять большее количество белков.

Для профилактики распада мышечной ткани женщины должны употреблять минимум 1 г белка на 1 кг веса. Однако оптимальным количеством считается 2 г. Для мужчин этот параметр увеличивается до 3 г. Это означает, что представитель сильного пола весом 90 кг должен съедать в день 270 г чистого белка.

Усваиваемость белка

Усваиваемость белка

При употреблении таких веществ, стоит помнить о чувстве меры. Избыточное количество белков представляет определенную опасность. Они с трудом перевариваются и могут вызвать нарушения пищеварительных функций.

Проблемы с усвоением белков могут возникать в следующих ситуациях:

  1. Избыточное количество белка за 1 прием пищи. За 1 прием организм не может усвоить больше 35 г белков. Помимо этого, избыток таких веществ отрицательно влияет на пищеварительные функции. Организм не способен переварить большое количество протеинов. Как следствие, неусвоенная часть начинает гнить в пищеварительных органах. Это провоцирует запоры, увеличение ацетона и нарушения в работе поджелудочной железы.
  2. Систематическое переедание. Диетологи советуют придерживаться принципов дробного питания – 4-5 раз в день. Это помогает лучше переваривать пищу, в том числе и белки.
  3. Употребление большого количества трудноперевариваемых белков. Протеины могут усваиваться в разном объеме. Есть белки, которые легко перевариваются. Однако существуют и трудноперевариваемые продукты. Эталоном белковой пищи считаются куриные яйца. Также к легким белкам относят нежирные кисломолочные продукты, куриное филе, кролика.
  4. Исключение жиров. Безусловно, жирные продукты содержат большое количество калорий и с трудом усваиваются. Однако полностью отказываться от них не следует. Это чревато гормональными нарушениями, ухудшением состояния волос и кожи. Также исключение жиров провоцирует нарушение процесса переваривания белков. Чтобы обеспечить эффективную работу печени и выведение продуктов синтеза белка, стоит включать в рацион желчегонные жиры. Они присутствуют в оливковом и кунжутном маслах.
  5. Дефицит жидкости. Нарушение питьевого режима провоцирует разные проблемы, включая ухудшение усвоения белка. В сутки человек должен пить 30-40 мл воды на 1 кг массы тела. В жаркую погоду или при серьезных физических нагрузках норма дополнительно повышается на 500-800 мл.
  6. Неправильные дополнения к белкам. Чтобы протеины усваивались максимально хорошо, их рекомендуется сочетать с овощами. В такой пище присутствуют ферменты и клетчатка. Это облегчает переваривание белков.

Вред белков

Вред белков

Нарушения белкового обмена представляют большой вред для организма. Эти вещества принимают участие почти во всех физиологических процессах. При нарушении обмена белков есть риск развития опасных нарушений.

При этом для здоровых людей белки представляют опасность лишь при избыточном потреблении в течение долгого периода времени. При соблюдении белковых диет, которые базируются на употреблении большого количества протеинов, нужно помнить о чувстве меры. Такие системы питания должны быть кратковременными и плавными.

Избыточное количество белков в рационе провоцирует поражение почек и печени. Это связано со сложным процессом выведения веществ. В этом случае вырабатываются кетоновые тела, которые провоцируют отравление организма.

При некоторых патологиях есть противопоказания к употреблению белков. К ним относят подагру, недостаточность почек и печени, хроническую форму панкреатита.

Белки представляют собой ценные вещества, которые принимают участие во всех физиологических процессах. Потому каждый человек должен употреблять достаточное количество протеинов. При этом необходимо помнить о чувстве меры и соблюдать рекомендации врачей.

белки — урок. Биология, Общие биологические закономерности (9–11 класс).

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

 

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

 

Разрушение первичной структуры необратимо.

 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

Белки как молекулы. Состав, структура и функции белков

Белки выполняют ведущую роль в жизни организмов, преобладая в них и количественно. В теле животных они составляют 40-50% сухой массы, в растениях – 20-35%. Это самая разнообразная группа молекул – как химически, так и функционально. Состав и структура белков определяет огромное разнообразие их функций в клетке: их так много, что невозможно перечислить и описать их все. Однако можно сгруппировать эти функции в следующие восемь категорий. Но этот список также будет неполным.

    1. Ферментативная (каталитическая). Ферменты имеют белковое происхождение. Это трёхмерные глобулярные (свёрнутые) белки, плотно прилегающие к молекуле для её расщепления или сборки. Такая подгонка ускоряет специфические химические реакции в клетке.
    2. Защитная. Другие глобулярные белки используют свою форму для распознавания чужеродных микроорганизмов и раковых клеток. Эти приёмные устройства формируются эндокринной и иммунной системами. Многие живые организмы выделяют белки, ядовитые для других. Токсины синтезируют ряд животных, грибов, растений, микроорганизмов. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.
    3. Транспортная. Глобулярные белки присоединяют и транспортируют мелкие молекулы и ионы. Например, транспортный белок гемоглобин переносит кислород и углекислоту с потоком крови. Мембранные транспортные белки помогают молекулам и ионам двигаться через плазмалемму. Альбумины крови транспортируют жирные кислоты, глобулины – ионы металлов и гормоны.
    4. Структурная. Белковые молекулы входят в состав всех клеточных мембран и органоидов. Из белков построены элементы цитоскелета, сократительные структуры мышечных волокон. Структурными являются кератин в волосах, фибрин в сгустках крови, коллаген в коже, связках, сухожилиях и костях. В состав связок, стенок артерий и лёгких входит также структурный белок эластин.
    5. Двигательная. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Мышцы сокращаются за счёт движения двух видов белковых нитей: актина и миозина. Контрактильные (лат. contraho, contractum – стягивать, сокращать) протеины играют ключевую роль в цитоскелете и передвижении веществ внутри клетки. Белок тубулин также входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.
    6. Регуляторная. Крошечные белки, называемые гормонами, служат межклеточными посланниками в теле животных. Другие белки регулируют синтез РНК на ДНК, включая и выключая гены. Кроме того белки получают информацию, действуя в качестве рецепторов клеточной поверхности (эту функцию иногда считают отдельной, называя рецепторной).
    7. Запасающая. Кальций и железо хранятся в организме в виде ионов, связанных с белками хранения. В семенах растений запасаются резервные белки, которые используются зародышем при прорастании, а затем и проростком как источник азота.
  1. Энергетическая. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и липидов.
Сравнительный размер молекул белков. Слева направо: антитело (IgG) (150 кДа), гемоглобин (66,8 кДа), гормон инсулин, фермент аденилаткиназа и фермент глютаминсинтетаза.
Автор: en:User:Gareth White, CC BY-SA 2.0

Функции белков

 

Функция Класс белка Образцы Примеры использования
Каталитическая Ферменты Карбогидразы Расщепляют полисахариды
Протеазы Разрушают белки
Полимеразы Синтезируют нуклеиновые кислоты
Киназы Фосфорилируют сахара и белки
Защитная Иммуноглобулины Антитела Маркируют чужеродные белки для элиминации (удаления)
Токсины Змеиный яд Блокирует нервные импульсы
Клеточные белки-антигены МНС-белки (главный комплекс гистосовместимости) Опознание чужеродных белков
Транспортная Циркуляционные транспортёры Гемоглобин Переносит кислород и углекислый газ крови
Миоглобин Переносит кислород и углекислый газ в скелетных мышцах и мышце сердца
Цитохромы Транспортируют электроны
Мембранные транспортные белки Натриево-калиевый насос Возбуждение мембраны
Протонный насос Хемиосмос
Транспортёр глюкозы Транспортирует глюкозу в клетки
Структурная Волокна Коллаген Образует хрящ
Кератин Формирует волосы, ногти, перья и др.
Фибрин Образует сгустки крови
Двигательная Мускулы Актин Сокращение мышечных волокон
Миозин Сокращение мышечных волокон
Регуляционная Осмотические белки Сывороточный альбумин Поддерживает осмотическую концентрацию крови
Регуляторы генов Репрессор Регулирует транскрипцию
Гормоны Инсулин Контролирует уровень глюкозы в крови
Вазопрессин Увеличивает задержку воды почками
Окситоцин Регулирует сокращение матки и выделение молока
Запасающая Ион-связывание Ферритин Хранит железо, особенно в селезёнке
Казеин Хранит ионы в молоке
Кальмодулин Связывает ионы кальция

Белки – это полимеры

Белки, или протеины – это нерегулярные (не имеющие определённой закономерности в последовательности мономеров) полимеры, состоящие из мономеров, называемые аминокислотами. Протеины, в состав молекул которых входит от пятидесяти до нескольких тысяч остатков аминокислот, называются белками. Молекулы с меньшим количеством мономеров именуются пептидами.

Общие сведения о пептидах и белках

Белок состоит из одной или нескольких длинных неразветвлённых цепей. Каждая цепь называется полипептидом и состоит из аминокислот, скреплённых пептидными связями. Термины «белок» и «полипептид» часто используются свободно, что может вызывать путаницу. Для белка, который включает только одну полипептидную цепь, оба термина являются синонимами.

В природе существуют около 500 аминокислот. В образовании белков обычно (но не всегда) участвуют только 20 из них – их называют белокобразующими. Порядок соединения мономеров в белке определяет его структуру и функции. Многие учёные считают, что аминокислоты были первыми органическими молекулами, появившимися на Земле. Возможно, океаны, которые существовали в начале истории нашей планеты, содержали большое их разнообразие.

Белокобразующие аминокислоты

Автотрофные организмы синтезируют все необходимые им аминокислоты из продуктов фотосинтеза и азотсодержащих неорганических соединений. Для гетеротрофов источником аминокислот являются продукты питания. В организме человека и животных некоторые аминокислоты могут синтезироваться из продуктов обмена веществ (в первую очередь — из других аминокислот). Такие аминокислоты называются заменимыми.

Другие же, так называемые незаменимые аминокислоты, не могут быть собраны в организме и поэтому должны постоянно поступать в него в составе белков пищи. Протеины, содержащие остатки всех незаменимых аминокислот, называются полноценными. Неполноценные белки – это те, в составе которых отсутствуют остатки тех или иных незаменимых аминокислот.

Незаменимыми аминокислотами для человека являются: триптофан, лизин, валин, изолейцин, треонин, фенилаланин, метионин и лейцин. Для детей незаменимыми являются также аргинин и гистидин.

Полипептидные цепи могут быть очень длинными и включать самые разные комбинации аминокислотных остатков. Каждый конкретный белок характеризуется строго постоянным составом и последовательностью аминокислот.

Димер мембранного белка кальсеквестрина.
Deposition authors: Wang, S., Trumble, W.R., Liao, H., Wesson, C.R., Dunker, A.K., Kang, C., CC BY 3.0

Белки, образованные только остатками аминокислот, называются простыми. Сложными являются протеины, имеющие в своём составе компонент неаминокислотной природы. Это могут быть ионы металлов (Fe2+, Zn2+, Mg2+, Mn2+), липиды, нуклеотиды, сахара и др. Простыми белками являются альбумины крови, фибрин, некоторые ферменты (трипсин) и др. Сложные белки – это большинство ферментов, иммуноглобулины (антитела).

Состав аминокислот

Аминокислоты, как следует из их названия, содержат основную аминогруппу (— NH2), а также кислотную карбоксильную группу (—COOH), обе они связаны с центральным атомом углерода. Углерод дополнительно скреплен с водородом и функциональной белковой группой, называемой радикалом (R). Эти компоненты полностью заполняют все связи центрального атома углерода.

Общая структура α-аминокислот, составляющих белки (кроме пролина).
Автор: User:X-romix

Уникальный характер каждой аминокислоты определяется природой группы радикала. Обратите внимание, что если группа радикала не содержит атома водорода (Н), как в глицине, то аминокислота хиральна и может существовать в форме двух энантиомеров: d или L. В белках живых систем содержатся обычно α (L)-аминокислоты, а β (d)-аминокислоты встречаются крайне редко.

Группа радикала определяет химические свойства аминокислот – они могут быть полярными или неполярными, гидрофобными или гидрофильными. Серин с радикалом -CH2OH является полярной молекулой, Аланин, который имеет –CH3 как группу радикала – неполярен.

Существуют также основные аминокислоты (более чем с одной аминогруппой) и кислые аминокислоты (более чем с одной карбоксильной группой). Наличие дополнительной амино- или карбоксильной группы оказывает влияние на свойства аминокислоты, которые играют определяющую роль в формировании пространственной структуры белка.

В состав радикала некоторых аминокислот (например, цистеина) входят атомы серы. Все 20 аминокислот сгруппированы в пять химических классов, основанных на группе их радикала.

  1. Неполярные аминокислоты, такие как лейцин, часто имеют в качестве радикала —CH2 или —CH3.
  2. Полярные незаряженные аминокислоты, такие как треонин, с радикалом, содержащим кислород или гидроксильную группу (-OH).
  3. Заряженные аминокислоты, такие как глутаминовая кислота, с радикалом, имеющим кислоты или основания, способные к ионизации.
  4. Ароматические аминокислоты, такие как фенилаланин, имеющий группу радикала, содержащую органическое (углеродное) кольцо с чередованием одиночных и двойных связей. Они также неполярны.
  5. Аминокислоты, обладающие особыми функциями и свойствами. Например, метионин, который часто является первой аминокислотой в цепи белков, пролин, вызывающий перегибы в цепях, цистин, связывающий цепи вместе.

Каждая аминокислота влияет на форму белка по-разному, в зависимости от химической природы боковых групп. Например, части белковой цепи с многочисленными неполярными аминокислотами сворачиваются внутрь своей цепи путём гидрофобного исключения.

Белки и пептидные связи

В дополнении к группе радикала каждая аминокислота имеет положительно заряженную аминогруппу (NH3 +) на одном конце и отрицательно заряженную гидроксильную группу (COO -) на другом. Амино- и карбоксильные группы у пары аминокислот могут подвергаться реакции дегидрации (выделение молекулы воды) с образованием ковалентной связи. Ковалентная связь, скрепляющая две аминокислоты, называется пептидной. Скреплённые таким способом аминокислоты не могут свободно вращаться вокруг N-C связи. Этот факт является основным фактором образования конструкции белковых молекул.

Пептидная связь

Наличие как основной, так и кислотной групп обусловливает амфотерность (проявление как кислотных, так и основных свойств) и высокую реакционную способность аминокислот.

При соединении двух аминокислот образуется дипептид. На одном конце молекулы дипептида находится свободная аминогруппа, на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется более 10 остатков аминокислот, то образуется полипептид.

Новаторская работа Фредерика Сангера в начале 1950-х годов доказала, что каждый вид белка имеет определённую аминокислотную последовательность. Для отщепления аминокислот он использовал химические методы, после этого определял их. Сангер преуспел в расшифровке аминокислотной последовательности инсулина. Он продемонстрировал, что все молекулы инсулина имеют одинаковый состав аминокислот.

Уровни структурной организации белков

Форма белка определяет его функцию. Один из способов изучить что-то столь же маленькое как белок – посмотреть на него при помощи коротковолнового излучения, которое представлено рентгеновскими лучами. Рентгеновские лучи пропускают через белок для получения дифракции его узора. Эта картинка кропотливо анализируется и позволяет исследователю построить трёхмерное изображение молекулы с положением каждого её атома. Первым белком, проанализированным таким образом, был миоглобин; вскоре такому же анализу был подвергнут связанный с ним белок гемоглобин.

Когда было изучено достаточное количество протеинов, стал очевиден общий принцип их строения: в каждом исследованном белке все внутренние аминокислоты, такие как лейцин, валин и фенилаланин, неполярны. Тенденция воды к исключению неполярных молекул буквально толкает такие части цепи аминокислот внутрь протеина. Неполярные аминокислоты вынуждены тесно контактировать друг с другом, оставляя мало свободного места внутри молекулы. Полярные и заряженные аминокислоты концентрируются на поверхности белка, за исключением немногих, играющих ключевые функциональные роли.

Структура белков, как правило, описывается как иерархия четырёх уровней: первичного, вторичного, третичного и четвертичного. Мы рассмотрим эту точку зрения, а затем интегрируем её с более современным подходом, вытекающим из расширяющихся знаний о белковой структуре.

Уровни организации молекул белка

Первичная структура белков

Первичная структура белка – это его аминокислотная последовательность, т. е. это цепочка из множества аминокислотных остатков, соединённых пептидными связями. Это наиболее важная структура, так как именно она определяет форму, свойства и функции белка. На основе первичной структуры создаются другие формы молекулы.

Группы радикалов, которыми отличаются аминокислоты, не играют роли в пептидной цепи белков и протеин может включать любую последовательность аминокислот. Так как любая из 20 аминокислот может появиться в любом месте, белок, содержащий 100 мономеров, может образовать любую из 20 100 различных аминокислотных последовательностей. Это важное свойство белков позволяет им быть разнообразными, но каждый из них функционирует только при определённой аминокислотной последовательности.

Вторичная структура белка

Боковые и пептидные группы полипептидных цепей могут образовывать водородные связи. Вторичная структура белка возникает в результате связывания атомов водорода NH-групп и кислорода CO-групп. Полипептидная цепь при этом спирально закручивается. Водородные связи слабые, но благодаря их большому числу они обеспечивают стабильность этой структуры. Спиральную конфигурацию имеют, например, молекулы кератина, миозина и коллагена.

Водородные связи пептидов могут образовываться с водой. Если связей с водой будет слишком много, белки не смогут приобрести глобулярной структуры. Лайнус Полинг предположил, что пептидные группы могут взаимодействовать друг с другом, если пептид свёрнут в спираль, которую он назвал α-спиралью. Этот вид регулярного взаимодействия в пептиде формирует его вторичную структуру.

Вторичная структура инсулина

Другая форма вторичной структуры формируется между зонами пептида, расположенными в один ряд, в результате чего получается плоская молекула, собранная в складки, называемая β-листом. Части белка могут быть либо параллельными, либо антипараллельными – в зависимости от того, являются ли смежные участки пептида ориентированными в одном или в противоположном направлении.

Эти два вида вторичной структуры создают зоны белка – цилиндрические (α-спирали) и плоские (β-листы). Конечная структура белка может включать области каждого типа вторичной структуры. Например ДНК-связывающие белки обычно имеют области α-спирали, которые могут лежать поперёк ДНК и взаимодействовать непосредственно с основаниями ДНК. Белки порины, образующие отверстия в мембранах, состоят из β-листов. В гемоглобине α и β-структуры (глобины) имеют в молекуле свои зоны.

Вторичная структура белков

Третичная структура белков

Окончательная структура химически связанных белков называется третичной. Третичная структура формируется за счет образования водородных, ионных и других связей, возникающих в водной среде между разными группами атомов белковой молекулы вторичной структуры.

У некоторых белков важную роль в образовании третичной структуры играют S – S связи (дисульфидные) между остатками цистеина (аминокислоты, содержащей серу). При этом полипептидная спираль укладывается в своеобразный клубок (глобулу) таким образом, что гидрофобные аминокислотные радикалы погружаются внутрь глобулы, а гидрофильные располагаются на поверхности и взаимодействуют с молекулами воды. Третичной структурой определяются специфичность белковых молекул, их биологическая активность. Её имеют многие белки, например миоглобин (белок, который участвует в создании запаса кислорода в мышцах) и трипсин (фермент, расщепляющий белки пищи в кишечнике).

Третичная структура стабилизируется рядом сил, в том числе:

  • водородными связами между радикалами различных аминокислот;
  • электростатическим притяжением радикалов с противоположными зарядами;
  • гидрофобным исключением неполярных радикалов;
  • ковалентными дисульфидными связами.

На стадии третичной структуры по форме молекул белки можно разделить на две группы:

  • глобулярные – имеют округлую форму. Такую форму имеют глобулины и альбумины крови, фибриноген, гемоглобин;
  • фибриллярные – характеризуются вытянутой, нитевидной формой молекул. Это кератин, коллаген, миозин, эластин и др.

Четвертичная структура белка

Когда два или более полипептида связываются с образованием функционального белка, отдельные его цепи называются субъединицами. Расположение этих субъединиц и есть четвертичная структура. Субъединицы в таких белках чаще всего неполярны, поэтому они не связаны химически и отвечают за отдельные виды деятельности. Прочность четвертичной структуры обеспечивается взаимодействием слабых межмолекулярных сил.

Четвертичная структура характерна для белка гемоглобина. Вспомните, что гемоглобин состоит из двух α-цепей и двух β-цепей, а ещё в его состав входит небелковый компонент – гем.

Субъединицы располагаются в их окончательной четвертичной структуре. Это конечная структура некоторых, но не всех белков. У протеинов, которые состоят только из одной полипептидной цепи, например у фермента лизоцима, конечной структурой является третичная.

Мотивы и домены – структурные элементы белков

Ручное определение последовательности аминокислот в белке – трудоёмкая работа. Эту ситуацию изменило открытие способности хранения информации о белке молекулой ДНК. Первоначально геном человека был расшифрован вручную. Появление технологий следующего поколения привело к заметному ускорению секвенирования.

Сегодня расшифрованы более 40 000 бактериальных геномов и почти 8 000 геномов эукариот, в том числе 80 последовательностей генов млекопитающих. Так как состав ДНК имеет непосредственное отношение к последовательности аминокислот в белках, у биологов теперь есть огромная база данных строения протеинов.

Новая информация заставила задуматься о логике генетического кода и основных закономерностях структуры белка. Исследователи до сих пор рассматривают иерархическую систему из четырёх уровней как важную, но в лексикон биологов вошли и новые термины: мотив укладки и белковый домен.

Мотив укладки белковых молекул

Когда биологи обнаружили третичную структуру белка (ещё более трудоёмкая работа, чем определение последовательности аминокислот в цепи), они заметили сходные элементы, расположенные в непохожих белках. Подобные структуры называются мотивами, а иногда «сверхсекундными структурами». Термин «мотив» заимствован из искусства и относится к тематическому повторяющемуся элементу в музыке или дизайне.

Один общий мотив β-α-β образует так называемую «складку Россмана» у большого количества протеинов. Вторым часто встречающимся мотивом является β-баррель, который представляет собой β-лист, сложенный по кругу, чтобы сформировать трубку. Третий тип мотива – спираль-поворот-спираль, состоит из двух α-спиралей, разделённых изгибом. Его используют белки для связывания с молекулой ДНК.

Логику структуры мотивов укладки исследователи до сих пор не могут понять. Вероятно, если аминокислоты являются буквами в языке белков, то мотивы представляют собой повторяющиеся слова или фразы. Мотивы укладки помогли определить неизвестные функции белков, а база данных белковых мотивов используется для поиска новых неизвестных протеинов.

Мотивы укладки являются довольно консервативными и встречаются в белках, которые не имеют ни функциональных, ни эволюционных связей. Определение мотивов укладки лежит в основе физической, или рациональной классификации белков.

Белковые домены

Домены – это функциональные единицы в виде глобулы внутри более крупной структуры белков. Их можно рассматривать как субструктуры внутри третичной структуры белка. В языке белков это «абзацы». Большинство белков состоит из нескольких доменов, которые выполняют различные части функций протеинов.

Во многих структурах эти домены могут быть физически разделены. Например, так устроены факторы транскрипции – белки, которые связываются с ДНК и инициируют построение РНК по комплементарной ей ДНК. Было выяснено, что если ДНК-связывающие области поменять местами с факторами транскрипции, специфичность фактора может быть изменена без изменения его способности стимулировать транскрипцию. Эксперименты по замене доменов были проведены со многими факторами транскрипции, и они указывают, что активационные и ДНК-связывающие домены действуют отдельно.

Эти образования также могут помогать протеинам складываться. По мере того, как полипептидная цепь приобретает свою структуру, домены принимают правильную форму. Это действие может быть продемонстрировано экспериментально. Искусственное продуцирование фрагмента полипептида, который образует домен в интактном белке, показывает, что фрагмент складывается, чтобы сформировать такую же структуру, как у прототипа.

Процесс складывания, белки-шапероны

Первоначально биохимики думали, что новоиспечённые белки сворачиваются спонтанно, пробуя различные конфигурации, как гидрофобные взаимодействия с водой толкают неполярные аминокислоты внутрь белков до тех пор, пока не будет достигнута их окончательная структура. Оказалось, что эта точка зрения слишком проста. Цепи протеинов могут быть сложены многими способами, поэтому пробы и ошибки заняли бы слишком много времени. По мере того как первичная цепь складывается, приобретая финальную структуру, неполярные «липкие» внутренние участки во время промежуточных стадий обнажаются. Если эти промежуточные формы поместить в пробирку со средой, идентичной той, что внутри клетки, они прилипают к другим, и нежелательные белки-партнёры образуют клейкую массу.

Как клетки избегают того, чтобы их белки слипались в массу? Ответ на вопрос появился во время изучения необычных мутаций, которые спасают бактериальные клетки от размножения внутри них вирусов. При этом белки вирусов, произведённые внутри клетки, не могут сложиться как следует. Дальнейшее исследование помогло выяснить, что клетки содержат белки-шапероны, помогающие другим белкам складываться правильно.

Свёртывание белков

В настоящее время молекулярные биологи выявили массу белков, действующих как шапероны. Это большой класс полимеров, который можно разделить на подклассы. Представители шаперонов были найдены в каждом исследуемом организме. Некоторые из них, называемые тепловыми шоковыми белками, вырабатывается в ответ на повышение температуры тела. Высокие температуры служат фактором денатурации белков, шоковые белки-шопероны помогают белкам правильно сворачиваться и в такой ситуации.

Один из хорошо изученных классов этих белков, названных шаперонинами, был изучен у кишечной палочки (Escherichia coli). У мутантов при инактивации шаперонинов 30% бактериального белка не складывались должным образом. Шаперонины собираются в комплекс, напоминающий цилиндрический контейнер. Белки могут заходить в этот контейнер, и даже неправильно сложенные молекулы складываются там заново.

Исследователи склонны думать о белках как о фиксированных структурах, но это не относится к шаперонинам. Их гибкость поразительна. Видимо, это нужно им для выполнения своих функций. Клетки используют эти белки для складывания некоторых молекул протеинов и восстановления их неправильной структуры.

Денатурация инактивирует белки

Еще одной важной особенностью белков является то, что они проявляют свою активность лишь в узких температурных рамках и в определённом диапазоне кислотности среды.

Если условия, окружающие белок, изменяются, то он может частично потерять свою структуру или полностью развернуться. Этот процесс называется денатурацией. Белки могут быть денатурированы, когда рН, температура или ионная концентрация окружающего раствора изменена. Денатурация происходит вследствие разрыва водородных, ионных, дисульфидных и других связей, стабилизирующих пространственную структуру белковых молекул. При этом может утрачиваться их четвертичная, третичная и даже вторичная структуры.

Денатурированные белки как правило биологически неактивны. Это особенно значимо в отношении ферментов: так как почти каждая химическая реакция происходит при их помощи, жизненно важно, чтобы они функционировали нормально.

До появления морозильников и холодильников единственным способом предохранения продуктов от размножения в них микроорганизмов было хранение их внутри раствора, содержащего высокую концентрацию соли или уксуса, которые денатурировали ферменты микроорганизмов и предотвращали их рост.

Большинство ферментов функционирует в очень узком диапазоне условий окружающей среды. У каждого энзима этот диапазон специфичен. Ферменты крови, которые работают при рН около 7,4, быстро денатурируют в кислой среде желудка. И наоборот, протеолитические ферменты желудка, работающие при рН=2 или менее, разбираются в основной среде крови. Аналогично у организмов, живущих вблизи океанических гидротермальных источников, есть ферменты, которые хорошо работают только в экстремальных температурах (до 100°С). Эти организмы не могут выжить в более прохладных водах, потому что их энзимы не функционируют должным образом при относительно низких температурах.

Если нормальные показатели окружающего раствора восстанавливаются, небольшой белок, не потерявший первичной структуры, может восстановиться. Этот процесс называется ренатурацией, он происходит благодаря взаимодействию неполярных аминокислот и воды. Первоначально этот процесс был установлен для энзима рибонуклеазы, его ренатурация привела к выводу, что первичная структура определяет третичную структуру белка. Более сложные белки редко складываются вновь из-за их сложной окончательной структуры. Их денатурация носит необратимый характер.

Важно отличать денатурацию от диссоциации. Субъединицы белков с четвертичной структурой могут быть диссоциированы (разделены) без потери своей индивидуальной третичной структуры. Например, молекула гемоглобина может диссоциировать на 4 молекулы (2 α-глобина и 2 β-глобина) без денатурации свёрнутых глобиновых белков. Они легко восстанавливают свою четвертичную структуру из четырёх субъединиц.

 

 

Вам будет интересно

Строение и функции белков - конспект

  
Вернуться к теме "Строение и функции белков"

Белки – полимеры, мономерами которых являются аминокислоты.

Среди органических веществ белки занимают первое место по количеству и по значению. В организме человека встречаются 5 млн разнообразных белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения они построены всего из 20 различных аминокислот.

Строение аминокислоты:

 

В левой части молекулы расположены группа h3N–, которая обладает свойствами основания; справа - группа –COOH - кислотная, характерная для всех органических кислот. Следовательно, аминокислоты – амфотерные соединения, совмещающие свойства и кислоты и основания. Этим обусловлена их способность взаимодействовать друг с другом. Соединяясь, молекулы аминокислот образуют связи между углеродом кислотной и азотом основной групп. Такие связи называются ковалентными, а в данном случае – пептидными связями:

Соединение двух аминокислот в одну молекулу называется дипептидом, трех аминокислот – трипептидом и т. д., а соединение, состоящее из 20 и более аминокислотных остатков, – полипептидом.

Последовательность аминокислот в полипептидной цепи принято называть первичной структурой белка.

Однако молекула белка в виде цепи аминокислотных остатков, последовательно соединенных между собой пептидными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот белковая молекула принимает вид спирали (α-структура) или складчатого слоя – «гармошки» (β-структура). Это вторичная структура белка. Но и ее часто недостаточно для приобретения характерной биологической активности.

Часто только молекула, обладающая третичной структурой, может выполнять роль катализатора или любую другую. Третичная структура образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу. Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или S–S, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает форму шарика, или глобулы. Способ укладки полипептидных спиралей в глобуле называют третичной структурой белка. Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требуется участие белков с еще более высоким уровнем организации.

Такую организацию называют четвертичной структурой. Присутствует не у всех белков. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого сложного белка – гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы – инсулин, включающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъединиц и разнообразные небелковые компоненты. Тот же гемоглобин содержит сложное гетероциклическое соединение, в состав которого входит железо.

Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структура

Строение молекулы гемоглобина

Гемоглобин – белок четвертичной структуры. В молекуле гемоглобина белковый компонент представлен белком глобином, небелковый компонент – гем. Глобин состоит из 4 субъединиц. Внутри каждой субъединицы имеется гидрофобный «карман», в котором располагается гем. Содержащийся в геме атом железа связывает кислород.

Свойства белка

Белки, как и другие неорганические и органические соединения, обладают рядом физико-химических свойств:

  1. Белки – преимущественно водорастворимые молекулы и, следовательно, могут проявлять свою функциональную активность только в водных растворах.
  2. Белковые молекулы несут большой поверхностный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран каталитической активности и других функций.
  3. Белки термолабильны, то есть проявляют свою активность в узких температурных рамках.

Денатурация и ренатурация белков

Денатурация  – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жестких условиях – и первичной структуры. В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов и органических растворителей. Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренатурации.

Функции белков

1. Каталитическая (ферментативная) функция:

Многие белки являются ферментами. Ферменты — это биологические катализаторы, т. е. вещества, ускоряющие протекание химических реакций в живых организмах. Ферменты участвуют в процессах синтеза и расщепления различных веществ. Они обеспечивают фиксацию углерода в процессе фотосинтеза, расщепление питательных веществ в пищеварительном тракте и т. д. 

 

2. Транспортная функция

Многие белки способны присоединять и переносить различные вещества. Гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из нее.

3. Защитная функция

Белки предохраняют организм от вторжения чужеродных организмов и от повреждений. Так, в ответ на проникновение чужеродных объектов (антигенов) определенные лейкоциты вырабатывают специфические белки — иммуноглобулины (антитела), участвующие в иммунном ответе организма. Белок плазмы крови фибриноген, участвуя в свертывании крови и тем самым уменьшая кровопотери.

4. Двигательная (сократительная) функция

Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Так, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения.

5. Структурная (строительная, пластическая) функция

Белки входят в состав всех клеток и тканей живых организмов. Белки являются обязательным компонентом всех клеточных мембран и органоидов клетки. Из белков построены элементы цитоскелета, сократительные элементы мышечных волокон. Преимущественно из белков состоят хрящи и сухожилия. В их состав входит белок коллаген. Важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт у животных является белок кератин. В состав связок, стенок артерий и лёгких входит структурный белок эластин.

6. Сигнальная (рецепторная) функция

Некоторые белки клеточных мембран способны изменять свою структуру в ответ на действие внешних факторов. С помощью этих белков происходит прием сигналов из внешней среды и передача информации в клетку.

7. Регуляторная функция

Некоторые белки являются гормонами. Они влияют на различные физиологические процессы. Например, инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) — процессы роста и физического развития.

8. Запасающая (питательная) функция

В семенах растений запасаются резервные белки, которые используются при прорастании зародышем.

9. Энергетическая функция

При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и жиров.

Белки 🐲 СПАДИЛО.РУ

Теория для подготовки к блоку «Цитология»

Белки – наиболее важные органические соединения клетки. Их содержание колеблется от 50% до 80% в разных клетках организма.

Строение белков

В состав белков, кроме 4 основных химических элементов (углерод, кислорода, водород, азот), могут входит фосфор, сера, железо. Белки – сложные высокомолекулярные соединения, которые составлены из аминокислотных последовательностей. Аминокислоты состоят из двух частей: аминогруппы -NH2 и карбоксильной группы -COOH. Первая несет в себе основные свойства, а вторая – кислотные, что обуславливает активности и амфотерность этих соединений (Амфотерность – проявление кислотных или основных свойств в зависимости от реакции). Аминокислоты отличаются радикалами.

Строение аминокислоты

Аминокислоты ассоциируются с генетическим кодом, так как последовательности нуклеотидов кодируют триплеты нуклеотидов. Такие задачи изучаются в школе и встречаются в ЕГЭ. Всем, кто сталкивался с генетикой, хорошо знакома таблица аминокислот:

Таблица аминокислот

В один белок может входить много аминокислот. Они соединяются в цепь посредством образования пептидных связей: азот одной аминокислоты связывается с углеродом другой аминокислоты:

Строение белка. Зеленым цветом обозначена карбоксильная группа аминокислоты, голубым цветом — аминогруппа аминокислоты

В состав белка может входить даже несколько аминокислотных цепей. Всего аминокислот насчитывается около 170, однако основное разнообразие задают 20 аминокислот, что связано с тем, что одна аминокислота может кодироваться различными последовательностями кодонов, или другими словами, аминокислота может кодироваться разными триплетами нуклеотидов. Это одно из свойств генетического кода (свойство избыточности).

Некоторые аминокислоты животный организм синтезирует самостоятельно, но, как можно догадаться, не все. Такие аминокислоты называются незаменимыми аминокислотами, их следует употреблять с пищей. Например, лейцин используется не просто как биологическая добавка, что достаточно распространено среди фармакологических компаний, но и применяется при лечении заболеваний печени, а также анемии, она же малокровие.

Классификация белков

Протеины – белки, в состав которых входят только белковые молекулы.

Протеиды – белки, в состав которых, кроме белковых молекул, входят небелковые молекулы.

  • Гликопротеиды (белок + углевод)
  • Липопротеиды (белок + липид)
  • Нуклеопротеиды (белок + нуклеиновые кислоты)

Для того чтобы не путаться в понятиях, нужно вспомнить, что принимают спортсмены для того, чтобы скорее нарастить мышечную массу, то есть протеиновые коктейли, батончики и т.д. Именно протеиновые, это слово на слуху, пусть теперь оно ассоциируется с этой классификацией.

Уровни организации белковой молекулы

Структура белка именуется просто по счету, в зависимости от сложности укладки.

Первичная структура белка представляет собой прямую цепь из аминокислот. Она является главной и определяющей свойства, форму и функции белка.

Вторичная структура белка – уже две цепи. Однако эти цепи не идут параллельно друг другу. Они скручены в спираль и связаны водородными связями, которые их удерживают за счет того, что их много. ДНК была обнаружена именно в форме двойной спирали. В этом виде она наиболее известна.

Третичная структура белка – глобула. Глобула означает шар, что и является описанием структуры белка. В этом случае прочность обусловлена тремя видами связей: водородными, ионными и дисульфидными.

Четвертичная структура белка – это как бы глобула из глобул. Она встречается не у всех белков. Белок крови гемоглобин состоит из 4х субъединиц четвертичной структуры.

Денатурация – утрата белковой молекулой своей природной структуры. Это обратимый процесс, похожий на сохранение в игре. Если белок денатурировал, но его природная структура не нарушена, то он восстановится. Причин разрушения белка может быть много: высокая температура, химические повреждения, радиация, обезвоживание и т.д. Так что когда мы варим яйца или мясо, то происходит денатурация белка. Как мы видим, к исходному состояния он уже не возвращается (не ренатурирует). Денатурацию и ренатурацию просто запомнить по похожим словам: денатурация – деградация – разрушение; ренатурация – регенерация – восстановление.

Денатурация и ренатурация

Функции белков
1.Структурная функция

Белки входят в состав всего в клетке: мембраны и органоиды. Кроме того, есть белки, которые очень важно знать:

  • Коллаген – входит в состав соединительной ткани. Коллаген можно запомнить по кремам, которые обещают продлить молодость и расправить морщины.
  • Кератин – известен всем, кто когда-либо смотрел рекламу шампуня для волос. Кератин входит в структуру волос и прочих производных нашего и животного тела: шерсть, перья, ногти, когти, копыта, рога.
  • Эластин – как понятно из названия, отвечает за эластичность. Она важна а) в связках, так как они должны растягиваться для совершения движений и возвращаться в исходное состояние. Кстати, в том числе и голосовые связки; б) в сосудах, по которым течет кровь порой под большим давлением, с высоким давлением и скоростью.
2.Ферментативная функция

Ферменты – катализаторы (= ускорители химических реакций) белковой природы. С ферментами происходит тесное знакомство в разделе «пищеварение». Есть одно важное правило, которое нужно обязательно запомнить: все ферменты – белки, но не все белки – ферменты.

3.Транспортная функция

Белки-транспортеры осуществляют перенос веществ через мембрану клетки. Очень наглядным примером транспорта белками является белок-переносчик гемоглобин, благодаря которому мы дышим. В мышцах существует аналог этого белка – миоглобин (приставка мио- означает «сокращение», тем самым называя месторасположение белка).

4.Защитная функция

Изучая иммунитет, ученики и студенты знакомятся с антителами – специфическими белками крови, которые вырабатываются иммунными клетками лимфоцитами для борьбы с чужеродными организмами или вредными соединениями. Так антитела сражаются за нас, когда мы хватаем где-то микробов, так же эти белки воюют, когда человеку переливают кровь неподходящей группы или пересаживают орган, который его организм отторгает. Переливание крови неподходящей группы может привести к летальному исходу, так как произойдет агглютинация – склеивание эритроцитов.

Некоторые растения и животные вырабатывают яды или токсины для того, чтобы защитить себя от нападения и поедания. Поэтому не следует есть незнакомые ягоды, грибы и ловить где-нибудь в тропиках лягушек. Это может закончиться плачевно.

Кроме оборонительной и атакующей функции во благо защиты организма, есть и латающая. При порезе и кровопотере молекулы белка тромбина объединяются для того, чтобы закрыть поврежденный сосуд, а тем временем, тонкие нити белка фибрина переплетаются на поверхности раны, образуя тоненькую пленочку. Если порез был несерьезным, то кровотечение успешно остановлено.

5.Регуляторная функция

Некоторые белки являются гормонами. Они отвечают за регуляцию физиологических процессов организма. Наиболее известным примером белкового гормона является инсулин.

6.Энергетическая функция

Как и углеводы с жирами, белки тоже могут быть расщеплены для получения энергии. Однако, чаще всего, аминокислоты, полученные в результате распада белка, снова используются организмом для построения других белков. Это делает для экономии энергии и биологического материала, ведь в случае повторного использования, не нужно тратиться на синтез новых соединений. При расщеплении 1 г белка высвобождается 17,6 кДж энергии.

 

Белки

Урок 11. Общая биология 10 класс (ФГОС)

В уроке описывается строение белковой молекулы. Её уровни организации. Рассказывается о том, что такое денатурация, а также о причинах её возникновения. Перечисляются основные функции белков. В данном уроке приводятся следующие понятия: аминокислоты, протеины, протеиды, ренатурация, фермент, кофермент.


Конспект урока "Белки"

белков | Основы биологии

Белки - это строительные блоки жизни. Они жизненно важны для нашего существования и присутствуют в каждом организме на Земле.

Белки - это наиболее распространенные молекулы, обнаруживаемые в клетках. Фактически, они составляют больше сухого вещества клетки, чем липиды, углеводы и все другие молекулы вместе взятые.

Белок состоит из одной или нескольких полипептидных цепей, и каждая полипептидная цепь построена из более мелких молекул, называемых «аминокислотами». Всего существует 20 аминокислот, которые можно упорядочить в триллионы и триллионы различных способов для создания белков, которые выполняют огромное количество функций.

Белки на самом деле являются наиболее структурно сложными молекулами, известными биологии.

Функции белков

Белки бывают самых разнообразных форм и выполняют широкий спектр функций. Примеры белков включают ферменты, антитела и некоторые гормоны, которые помогают ускорить химические реакции, защищают от болезней и регулируют активность клеток.

Белки также играют роль в движении, структурной поддержке, хранении, обмене данными между клетками, пищеварении и транспортировке веществ по телу.

Движение

Двигательные белки, такие как миозин и динеины, обладают способностью преобразовывать химическую энергию в движение. Миозин - это белок, содержащийся в мышцах, который вызывает сокращение мышечных волокон в мышцах.

Динеины обеспечивают питание жгутиков. Жгутики представляют собой длинные тонкие структуры, прикрепленные к внешней стороне определенных клеток, таких как сперматозоиды, и отвечают за их подвижность.

Структура и поддержка

Многие белки обеспечивают структурную поддержку определенных частей организма.Например, кератин - это белок, содержащийся во внешних слоях кожи, который делает кожу сильным защитным слоем для внешнего мира. Кератин также является структурным белком, из которого состоят волосы, рога и ногти.

Сотовая связь

Клетки взаимодействуют с окружающей средой и другими клетками. Рецепторные белки в клеточной мембране получают сигналы извне клетки и передают сообщения в клетку. Как только сигнал попадает в клетку, он обычно передается между несколькими белками, прежде чем достигает своего конечного пункта назначения (также чаще всего белка).

Пищеварение

Пищеварение обеспечивается, как вы уже догадались, белками. Ферменты - это белки, которые стимулируют пищеварение, ускоряя химические реакции.

Пищеварение - это расщепление пищи из крупных нерастворимых молекул на более мелкие, которые могут растворяться в воде. Поскольку более мелкие молекулы растворимы в воде, они могут попадать в кровь и переноситься по телу.

Пищеварительные ферменты - это ферменты, ответственные за расщепление молекул пищи на более мелкие водорастворимые молекулы.Вот некоторые примеры пищеварительных белков:

  • Амилаза - фермент в слюне, расщепляющий крахмал на растворимые сахара
  • Липаза - расщепляет жиры и другие липиды
  • Пепсин - расщепляет белки в пище

Транспорт кислорода

Гемоглобин - еще один чрезвычайно важный белок для животных, таких как млекопитающие и птицы. Это белок крови, который связывается с кислородом, чтобы кислород мог транспортироваться по телу.

Гемоглобин содержит атом железа.Химическая структура гемоглобина вокруг атома железа позволяет кислороду связываться с железом и затем выделяться в ткани, лишенные кислорода.

Как видите, белки чрезвычайно важны для здорового функционирования организма. Большинство примеров, которые я использовал, являются белками животного происхождения, но белки не менее важны для других форм жизни, таких как растения, грибы и бактерии.

Строительные блоки белков

Аминокислоты являются строительными блоками белков.Всего в природе существует 20 различных аминокислот. Аминокислоты могут связываться друг с другом самыми разными способами, создавая разные белки.

Химическая структура аминокислот - ключ к тому, почему белки стали основой жизни. Аминокислота состоит из карбоксильной группы (химическая структура -COOH), аминогруппы (-NH₂) и боковой цепи, состоящей в основном из углерода и водорода.

Сайдчейн часто называют группой R. Различия в группе R - это то, что отличает 20 аминокислот друг от друга.

В зависимости от структуры группы R аминокислота может быть водорастворимой (полярной), нерастворимой в воде (неполярной) или содержать положительный или отрицательный заряд. Эти характеристики, в свою очередь, влияют на поведение аминокислот при их связывании и влияют на общую форму и функцию белка.

Все 20 аминокислот необходимы для хорошего здоровья. Если в организме мало одной из 20 аминокислот, определенные белки не могут быть построены, и потеря их функций вызовет проблемы со здоровьем для организма.

Некоторые аминокислоты могут быть созданы организмом с использованием других молекул, в то время как другие аминокислоты должны быть получены из пищи. Аминокислоты, которые необходимо употреблять в пищу, известны как «незаменимые аминокислоты», потому что они являются неотъемлемой частью здорового питания. Аминокислоты, которые может производить наш организм, известны как «заменимые аминокислоты».

Полипептиды

Полипептид представляет собой цепочку аминокислот и является простейшей формой белка. Аминокислоты связываются вместе, образуя длинные линейные цепи, длина которых может составлять более 2000 аминокислот.

Порядок, в котором аминокислоты связаны друг с другом, определяет окончательную форму и структуру полипептидной цепи. Белок будет содержать один полипептид или несколько полипептидов, связанных вместе с образованием больших сложных белков.

Аминокислоты связаны между собой между аминогруппой (-NH₂) одной аминокислоты и карбоксильной группой (-COOH) второй аминокислоты.

Поскольку две аминокислоты связываются вместе, два иона водорода удаляются из аминогруппы, а кислород удаляется из карбоксильной группы.Аминогруппа и карбоксильная группа связываются вместе, и в качестве побочного продукта образуется молекула воды. Связь известна как «пептидная связь».

Соединение нескольких аминокислот вместе пептидными связями создает основу полипептида с группой R, отходящей от каждой аминокислоты. Как упоминалось ранее, каждая группа R из 20 аминокислот имеет свою уникальную структуру и химические свойства. Структура и химические свойства (такие как реакционная способность и температура кипения) полипептида и, в конечном итоге, белка определяются уникальной последовательностью групп R, которые отходят от основной цепи полипептида.Когда группы R притягиваются или отталкиваются друг от друга, полипептидная цепь изгибается и скручивается в белок уникальной формы.

Структура белка

Белки имеют четыре уровня структуры, все из которых мы уже упоминали на этой странице. Эти четыре уровня известны как первичная, вторичная, третичная и четвертичная структура белка.

Первичная структура

Первичная структура - это определенная последовательность аминокислот, то есть порядок, в котором они связаны друг с другом.Точный порядок связывания аминокислот определяется информацией, хранящейся в генах.

Посредством процессов, называемых транскрипцией и трансляцией, ДНК предоставляет клеткам всю необходимую информацию для создания точной первичной структуры для тысяч различных белков. Первичная структура определяет вторичную и третичную структуры белков.

Вторичная структура

Вторичная структура белка образована водородными связями между атомами вдоль основной цепи полипептидной цепи.

Помня, что каждая аминокислота имеет карбоксильную группу и аминогруппу, небольшой отрицательный заряд кислорода карбоксильной группы образует слабую связь с небольшим положительным зарядом атома водорода аминогруппы другой аминокислоты. Водородные связи слабые, но многие из них создают достаточно прочности, чтобы влиять на форму полипептидной цепи.

Водородные связи заставляют основную цепь полипептида складываться и скручиваться в две возможные формы - α-спираль и β-складчатые листы.Спираль α (греческая буква «альфа») представляет собой спираль, похожую на двойную спираль легендарной цепи ДНК, но только с одной спиралью, и образована водородными связями между каждой четвертой аминокислотой. Спираль α обычна в структурных белках, таких как кератин.

Складчатые листы β (греческая буква «бета») образуются, когда водородные связи возникают между двумя или более соседними полипептидными цепями и являются обычными для глобулярных белков (см. Ниже в разделе «Типы белков»).

Третичная структура

Третичная структура - это окончательная форма, которую принимает полипептидная цепь, и определяется группами R.Притяжение и отталкивание между различными группами R изгибает и складывает полипептид, создавая окончательную трехмерную форму белка.

Четвертичная структура

Не все белки имеют четвертичную структуру. Четвертичная структура возникает только тогда, когда несколько полипептидных цепей объединяются вместе, чтобы сформировать большой сложный белок. В таких случаях каждый полипептид упоминается как «субъединица».

Гемоглобин - пример белка с четвертичной структурой. У большинства животных гемоглобин состоит из четырех глобулярных субъединиц.

Типы белков

Существует четыре основных типа белков. Наиболее известны глобулярные белки. Три других типа белков - это волокнистые, мембранные и неупорядоченные белки.

Глобулярные белки

Глобулярные белки - это любой белок, имеющий сферическую форму в своей третичной структуре. К ним относятся многие ферменты, антитела и белки, такие как гемоглобин.

Глобулярные белки растворимы в воде и образуются за счет притяжения и отталкивания различных R-групп водой.Полярные группы R аминокислот в белках растворимы в воде, а неполярные группы R не растворимы в воде. Глобулярные белки образуются потому, что неполярные группы R прячутся во внутренних частях белка, а полярные группы R располагаются на внешней поверхности, которая подвергается воздействию окружающей воды.

Волокнистые белки

Волокнистые белки - это удлиненные белки, не имеющие какой-либо третичной структуры. Вместо того, чтобы изгибаться и складываться с образованием глобулярного белка, волокнистые белки остаются в своей линейной вторичной структуре.Часто они являются важными структурными и поддерживающими белками.

Волокнистые белки нерастворимы в воде и часто имеют повторяющиеся структуры аминокислот вдоль их полипептидной цепи. Примеры волокнистых белков включают коллаген, кератин и шелк.

Мембранные белки

Мембранный белок - это любой белок, обнаруженный внутри или прикрепленный к клеточной мембране. Это уникальные белки из-за уникальной среды, в которой они существуют.

Клеточные мембраны состоят из двойного слоя фосфолипидов.Внутренние части клеточной мембраны неполярны, а внешние - полярны. Для того, чтобы мембранные белки успешно существовали через клеточную мембрану, они должны содержать определенные неполярные и полярные участки.

Неупорядоченные белки

Открытие неупорядоченных белков в начале 2000-х годов бросило вызов историческому мышлению о белках. До этого считалось, что функция белка зависит от его фиксированной трехмерной структуры. Однако неупорядоченные белки не имеют упорядоченной структуры своей формы.

Некоторые белки могут быть полностью неструктурированными, в то время как другие частично структурированы с определенными неструктурированными участками. Другие белки обладают способностью существовать в виде неупорядоченных белков только для образования фиксированной структуры после связывания с другими молекулами.

Последний раз редактировалось: 23 апреля 2016 г.

БЕСПЛАТНЫЙ 6-недельный курс

Введите свои данные, чтобы получить доступ к нашему БЕСПЛАТНО 6-недельному вводному курсу электронной почты по биологии.

Узнайте о животных, растениях, эволюции, древе жизни, экологии, клетках, генетике, областях биологии и многом другом.

Успех! Письмо с подтверждением было отправлено на только что указанный вами адрес электронной почты. Проверьте свою электронную почту и не забудьте щелкнуть ссылку, чтобы начать наш 6-недельный курс.

.

3.3A: Типы и функции белков

Белки выполняют многие важные физиологические функции, в том числе катализируют биохимические реакции.

Цели обучения

  • Различать типы и функции белков

Ключевые моменты

  • Белки необходимы для основных физиологических процессов жизни и выполняют функции во всех системах человеческого тела.
  • Форма белка определяет его функцию.
  • Белки состоят из аминокислотных субъединиц, которые образуют полипептидные цепи.
  • Ферменты катализируют биохимические реакции, ускоряя химические реакции, и могут либо разрушать свой субстрат, либо строить более крупные молекулы из субстрата.
  • Форма активного центра фермента соответствует форме субстрата.
  • Гормоны - это тип белков, используемых для передачи сигналов и коммуникации клеток.

Ключевые термины

  • аминокислота : Любая из 20 встречающихся в природе α-аминокислот (имеющих амино- и карбоксильные группы на одном атоме углерода) и различных боковых цепей, которые объединяются через пептидные связи с образованием белков.
  • полипептид : Любой полимер (одинаковых или разных) аминокислот, соединенных пептидными связями.
  • катализатор : для ускорения процесса.

Типы и функции белков

Белки выполняют важные функции во всех системах человеческого тела. Эти длинные цепи аминокислот критически важны для:

  • катализирующие химические реакции
  • синтез и восстановление ДНК
  • транспортировка материалов по камере
  • прием и отправка химических сигналов
  • реагирует на раздражители
  • обеспечивает структурную поддержку

Белки (полимеры) представляют собой макромолекулы, состоящие из аминокислотных субъединиц (мономеров).Эти аминокислоты ковалентно связаны друг с другом с образованием длинных линейных цепей, называемых полипептидами, которые затем складываются в определенную трехмерную форму. Иногда эти свернутые полипептидные цепи функционируют сами по себе. В других случаях они объединяются с дополнительными полипептидными цепями, чтобы сформировать окончательную структуру белка. Иногда в конечном белке также требуются неполипептидные группы. Например, гемогобин белка крови состоит из четырех полипептидных цепей, каждая из которых также содержит молекулу гема, имеющую кольцевую структуру с атомом железа в центре.

Белки имеют разную форму и молекулярную массу в зависимости от аминокислотной последовательности. Например, гемоглобин представляет собой глобулярный белок, что означает, что он сворачивается в компактную шарообразную структуру, но коллаген, обнаруженный в нашей коже, представляет собой волокнистый белок, что означает, что он складывается в длинную вытянутую волокнистую цепочку. Вы, вероятно, похожи на членов своей семьи, потому что у вас одинаковые белки, но вы отличны от посторонних, потому что белки в ваших глазах, волосах и остальной части вашего тела разные.

Рисунок \ (\ PageIndex {1} \): Гемоглобин человека : Структура гемоглобина человека. Α и β субъединицы белков выделены красным и синим цветом, а железосодержащие гемовые группы - зеленым. Из базы данных по белкам.

Поскольку форма определяет функцию, любое небольшое изменение формы белка может привести к нарушению функции белка. Небольшие изменения в аминокислотной последовательности белка могут вызвать разрушительные генетические заболевания, такие как болезнь Хантингтона или серповидно-клеточная анемия.

Ферменты

Ферменты - это белки, которые катализируют биохимические реакции, которые в противном случае не имели бы места. Эти ферменты необходимы для химических процессов, таких как пищеварение и клеточный метаболизм. Без ферментов большинство физиологических процессов протекало бы так медленно (или не протекало бы совсем), что жизнь не могла бы существовать.

Поскольку форма определяет функцию, каждый фермент специфичен для своих субстратов. Субстраты - это реагенты, которые подвергаются химической реакции, катализируемой ферментом.Место, где субстраты связываются с ферментом или взаимодействуют с ним, известно как активный сайт, потому что это место, где происходит химия. Когда субстрат связывается со своим активным центром на ферменте, фермент может помочь в его распаде, перегруппировке или синтезе. Помещая субстрату определенную форму и микроокружение в активном центре, фермент стимулирует протекание химической реакции. Есть два основных класса ферментов:

Рис. \ (\ PageIndex {1} \): Ферментная реакция : Катаболическая ферментативная реакция, показывающая, что субстрат точно соответствует форме активного центра.
  • Катаболические ферменты: ферменты, расщепляющие субстрат
  • Анаболические ферменты: ферменты, которые строят более сложные молекулы из своих субстратов

Ферменты необходимы для пищеварения: процесс расщепления более крупных молекул пищи на субъединицы, достаточно мелкие, чтобы диффундировать через клеточную мембрану и использоваться клеткой. Эти ферменты включают амилазу, которая катализирует переваривание углеводов во рту и тонком кишечнике; пепсин, катализирующий переваривание белков в желудке; липаза, катализирующая реакции, необходимые для эмульгирования жиров в тонком кишечнике; и трипсин, который катализирует дальнейшее переваривание белков в тонком кишечнике.

Ферменты также необходимы для биосинтеза: процесса создания новых сложных молекул из более мелких субъединиц, которые поставляются или генерируются клеткой. Эти биосинтетические ферменты включают ДНК-полимеразу, которая катализирует синтез новых цепей генетического материала до деления клетки; синтетаза жирных кислот, которая синтезирует новые жирные кислоты для образования жиров или мембранных липидов; и компоненты рибосомы, которая катализирует образование новых полипептидов из мономеров аминокислот.

Гормоны

Некоторые белки действуют как химические сигнальные молекулы, называемые гормонами. Эти белки секретируются эндокринными клетками, которые контролируют или регулируют определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин - это белковый гормон, который помогает регулировать уровень глюкозы в крови. Другие белки действуют как рецепторы для определения концентрации химических веществ и отправки сигналов для ответа. Некоторые типы гормонов, такие как эстроген и тестостерон, являются липидными стероидами, а не белками.

Другие функции белков

Белки выполняют важные функции во всех системах человеческого тела. В дыхательной системе гемоглобин (состоящий из четырех белковых субъединиц) транспортирует кислород для использования в клеточном метаболизме. Дополнительные белки в плазме крови и лимфе переносят питательные вещества и продукты метаболизма по всему телу. Белки актин и тубулин образуют клеточные структуры, а кератин образует структурную опору для мертвых клеток, которые становятся ногтями и волосами.Антитела, также называемые иммуноглобинами, помогают распознавать и уничтожать чужеродные патогены в иммунной системе. Актин и миозин позволяют мышцам сокращаться, а альбумин питает раннее развитие эмбриона или проростка.

Рисунок \ (\ PageIndex {1} \): Тубулин : структурный белок тубулин, окрашенный в красный цвет в клетках мыши. .

Обзор анализа белок-белкового взаимодействия | Thermo Fisher Scientific

Белки контролируют все биологические системы в клетке, и хотя многие белки выполняют свои функции независимо, подавляющее большинство белков взаимодействуют с другими для обеспечения надлежащей биологической активности. Характеристика белок-белковых взаимодействий с помощью таких методов, как коиммунопреципитация (ко-IP), анализ методом «pull-down», перекрестное связывание, перенос метки и дальневестерн-блот-анализ имеет решающее значение для понимания функции белка и биологии клетки.

Посмотреть все продукты для анализа взаимодействия белков


Введение в белок-белковые взаимодействия

Белки - это рабочие лошадки, которые облегчают большинство биологических процессов в клетке, включая экспрессию генов, рост клеток, пролиферацию, поглощение питательных веществ, морфологию, подвижность, межклеточную коммуникацию и апоптоз.Но клетки реагируют на множество стимулов, и поэтому экспрессия белка - это динамический процесс; белки, которые используются для выполнения определенных задач, не всегда могут быть экспрессированы или активированы. Кроме того, не все клетки равны, и многие белки экспрессируются в зависимости от типа клетки. Эти основные характеристики белков предполагают сложность, которую может быть трудно исследовать, особенно при попытке понять функцию белка в надлежащем биологическом контексте.

Критические аспекты, необходимые для понимания функции белка, включают:

  • Последовательность и структура белка - используется для обнаружения мотивов, которые предсказывают функцию белка
  • История эволюции и консервативные последовательности - идентифицирует ключевые регуляторные остатки
  • Профиль экспрессии - выявляет специфичность клеточного типа и то, как регулируется экспрессия
  • Посттрансляционные модификации - фосфорилирование, ацилирование, гликозилирование и убиквитинирование предполагают локализацию, активацию и / или функцию
  • Взаимодействие с другими белками - функция может быть экстраполирована, зная функцию партнеров по связыванию
  • Внутриклеточная локализация - может указывать на функцию белка

До конца 1990-х годов анализ функции белков в основном фокусировался на отдельных белках.Однако, поскольку большинство белков взаимодействуют с другими белками для правильного функционирования, их следует изучать в контексте их взаимодействующих партнеров, чтобы полностью понять их функцию. С публикацией генома человека и развитием области протеомики понимание того, как белки взаимодействуют друг с другом и идентификация биологических сетей, стало жизненно важным для понимания того, как белки функционируют внутри клетки.

Справочник по приготовлению белков

Узнайте больше о том, как обессоливать, заменять буфер, концентрировать и / или удалять загрязняющие вещества из образцов белка, иммунопреципитации и других методах очистки и очистки белков с помощью различных инструментов биологии белков Thermo Scientific в этом 32-страничном справочнике.

  • Иммунопреципитация (IP), co-IP и хроматин-IP
  • Теги очистки рекомбинантного белка
  • Надежно диализируйте образцы белка с помощью диализных кассет и устройств Slide-A-Lyzer
  • Быстрое обессоливание образцов с высоким извлечением белка с использованием спиновых обессоливающих колонн и пластин Zeba
  • Эффективно удаляет определенные загрязнения с помощью смол, оптимизированных для удаления моющих средств или эндотоксинов
  • Концентрируйте разбавленные образцы белка быстро с помощью концентраторов белка Pierce
protein-prep-handbook

Типы белок-белковых взаимодействий

Белковые взаимодействия принципиально характеризуются как стабильные или временные, и оба типа взаимодействия могут быть сильными или слабыми.Стабильные взаимодействия связаны с белками, которые очищаются как мульти-субъединичные комплексы, и субъединицы этих комплексов могут быть идентичными или разными. Гемоглобин и ядерная РНК-полимераза являются примерами многосубъединичных взаимодействий, которые образуют стабильные комплексы.

Ожидается, что временные взаимодействия будут контролировать большинство клеточных процессов. Как следует из названия, временные взаимодействия носят временный характер и обычно требуют набора условий, способствующих взаимодействию, таких как фосфорилирование, конформационные изменения или локализация в дискретных областях клетки.Временные взаимодействия могут быть сильными или слабыми, быстрыми или медленными. Находясь в контакте со своими партнерами по связыванию, временно взаимодействующие белки участвуют в широком спектре клеточных процессов, включая модификацию белков, транспорт, фолдинг, передачу сигналов, апоптоз и клеточный цикл. Следующий пример представляет собой иллюстрацию белковых взаимодействий, которые регулируют апоптотические и антиапоптотические процессы.


Тяжелое белок-белковое взаимодействие BAD. Панель A: окрашенный кумасси гель SDS-PAGE рекомбинантного легкого и тяжелого BAD-GST-HA-6xHIS, очищенный из лизатов HeLa IVT (L) с использованием тандемного сродства глутатионовой смолы (E1) и кобальтовой смолы (E2). Указан расход (FT) из каждого столбца. Панель B: Схема фосфорилирования BAD и белковых взаимодействий во время выживания и гибели клеток (то есть апоптоза). Панель C: покрытие последовательности белка BAD, показывающее идентифицированные сайты консенсусного фосфорилирования Akt (красный прямоугольник). Панель D: МС-спектры меченного стабильным изотопом BAD пептида HSSYPAGTEDDEGmGEEPSPFr.


Белки связываются друг с другом посредством комбинации гидрофобных связей, сил Ван-дер-Ваальса и солевых мостиков в специфических связывающих доменах каждого белка. Эти домены могут быть небольшими связывающими щелями или большими поверхностями и могут состоять всего из нескольких пептидов или состоять из сотен аминокислот. На силу связывания влияет размер связывающего домена. Одним из примеров общего поверхностного домена, который способствует стабильным межбелковым взаимодействиям, является лейциновая застежка-молния, которая состоит из α-спиралей на каждом белке, которые связываются друг с другом параллельным образом посредством гидрофобного связывания регулярно расположенных остатков лейцина на каждом α -спираль, которая выступает между соседними спиральными пептидными цепями.Из-за плотной молекулярной упаковки лейциновые молнии обеспечивают стабильное связывание для мультибелковых комплексов, хотя все лейциновые молнии не связываются одинаково из-за нелейциновых аминокислот в α-спирали, которые могут уменьшить молекулярную упаковку и, следовательно, прочность соединения. взаимодействие.

Два домена гомологии Src (SH), Sh3 и Sh4, являются примерами общих временных связывающих доменов, которые связывают короткие пептидные последовательности и обычно обнаруживаются в сигнальных белках. Домен Sh3 распознает пептидные последовательности с фосфорилированными остатками тирозина, которые часто указывают на активацию белка.Домены Sh3 играют ключевую роль в передаче сигналов рецептора фактора роста, во время которой лиганд-опосредованное фосфорилирование рецептора по остаткам тирозина привлекает нижестоящие эффекторы, которые распознают эти остатки через их домены Sh3. Домен Sh4 обычно распознает богатые пролином пептидные последовательности и обычно используется киназами, фосфолипазами и GTPases для идентификации белков-мишеней. Хотя оба домена Sh3 и Sh4 обычно связываются с этими мотивами, специфичность для различных белковых взаимодействий диктуется соседними аминокислотными остатками в соответствующем мотиве.


Биологические эффекты белок-белковых взаимодействий

Результат двух или более белков, которые взаимодействуют с определенной функциональной целью, можно продемонстрировать несколькими различными способами.Измеримые эффекты белковых взаимодействий описаны следующим образом:

  • Изменять кинетические свойства ферментов, что может быть результатом незначительных изменений связывания субстрата или аллостерических эффектов
  • Обеспечение канализации субстрата путем перемещения субстрата между доменами или субъединицами, что в конечном итоге приводит к желаемому конечному продукту
  • Создать новый сайт связывания, как правило, для малых эффекторных молекул
  • Инактивировать или разрушить белок
  • Изменение специфичности белка в отношении его субстрата посредством взаимодействия с различными партнерами по связыванию, e.g., продемонстрировать новую функцию, которую ни один белок не может проявлять по отдельности.
  • Выполнять регулирующую роль в восходящем или нисходящем событии

Общие методы анализа белок-белковых взаимодействий

Обычно для проверки, характеристики и подтверждения белковых взаимодействий необходимо сочетание методов.Ранее неизвестные белки могут быть обнаружены по их ассоциации с одним или несколькими известными белками. Анализ взаимодействия белков может также выявить уникальные, непредвиденные функциональные роли хорошо известных белков. Обнаружение или проверка взаимодействия - это первый шаг на пути к пониманию того, где, как и при каких условиях эти белки взаимодействуют in vivo и функциональные последствия этих взаимодействий.

Хотя различных методов и подходов к изучению межбелковых взаимодействий слишком много, чтобы описывать их здесь, в таблице ниже и оставшейся части этого раздела основное внимание уделяется общим методам анализа межбелковых взаимодействий и типам взаимодействий, которые можно изучить с использованием каждого из них. метод.Таким образом, стабильные белок-белковые взаимодействия проще всего выделить физическими методами, такими как коиммунопреципитация и анализ методом pull-down, поскольку белковый комплекс не распадается с течением времени. Слабые или временные взаимодействия можно идентифицировать с помощью этих методов, сначала ковалентно сшивая белки, чтобы заморозить взаимодействие во время co-IP или pull-down. Альтернативно, перекрестное сшивание, наряду с переносом метки и анализом дальнего вестерн-блоттинга, можно проводить независимо от других методов для выявления межбелковых взаимодействий.

Общие методы анализа различных типов белковых взаимодействий

Метод Белковые взаимодействия
Коиммунопреципитация (co-IP) Стабильный или прочный
Анализ методом вытягивания вниз Стабильный или прочный
Анализ взаимодействия сшивающего белка Кратковременный или слабый
Анализ взаимодействия белков переноса метки Кратковременный или слабый
Дальневосточный блот-анализ Умеренно стабильный

Коиммунопреципитация (ко-IP)

Коиммунопреципитация (co-IP) - популярный метод обнаружения взаимодействия белков.Co-IP проводится по существу так же, как иммунопреципитация (IP) одного белка, за исключением того, что целевой белок, осажденный антителом, также называемый «приманкой», используется для соосаждения комплекса связывающий партнер / белок. , или «добыча», из лизата. По существу, взаимодействующий белок связывается с антигеном-мишенью, который связывается антителом, иммобилизованным на подложке. Иммунопреципитированные белки и их партнеры по связыванию обычно обнаруживаются электрофорезом в полиакриламидном геле с додецилсульфатом натрия (SDS-PAGE) и вестерн-блоттингом.Предположение, которое обычно делается при соосаждении связанных белков, состоит в том, что эти белки связаны с функцией антигена-мишени на клеточном уровне. Однако это только предположение, которое подлежит дальнейшей проверке.

Совместная иммунопреципитация циклина B и Cdk1 . Магнитные гранулы Thermo Scientific Pierce Protein A / G связываются с антителом Cdk1 в комплексе с Cdk1. Циклин B связан с Cdk1 и захватывается вместе со своим партнером по связыванию.


Анализ

Pull-down схож по методологии с коиммунопреципитацией, поскольку для очистки взаимодействующих белков используется подложка из гранул. Однако разница между этими двумя подходами заключается в том, что в то время как co-IP использует антитела для захвата белковых комплексов, в методах «pull-down» используется белок «приманка» для очистки любых белков в лизате, которые связываются с приманкой.Нисходящие анализы идеальны для изучения сильных или стабильных взаимодействий или тех, для которых нет антител для коиммунопреципитации.

Общая схема анализа методом выпадающего списка. Нисходящий анализ представляет собой мелкомасштабную методику аффинной очистки, аналогичную иммунопреципитации, за исключением того, что антитело заменяется какой-либо другой системой аффинности. В этом случае аффинная система состоит из глутатион-S-трансферазы (GST), белка или связывающего домена, меченного полигис- или стрептавидином, который захватывается глутатионом, хелатом металла (кобальт или никель) или покрытыми биотином агарозными шариками. соответственно.Иммобилизованный белок, меченный слиянием, действует как «приманка» для захвата предполагаемого партнера по связыванию (то есть «жертвы»). В типичном нисходящем анализе иммобилизованный белок-приманка инкубируется с клеточным лизатом, и после предписанных стадий промывки комплексы выборочно элюируются с использованием конкурирующих аналитов или буферов с низким pH или восстанавливающих буферов для анализа в геле или вестерн-блоттинга.


Анализ взаимодействия сшивающего белка

Большинство белок-белковых взаимодействий являются временными, лишь кратковременно происходящими как часть единственного каскада или другой метаболической функции внутри клеток.Сшивание взаимодействующих белков - это подход к стабилизации или постоянному соединению компонентов комплексов взаимодействия. После того, как компоненты взаимодействия ковалентно сшиты, другие стадии (например, лизис клеток, аффинная очистка, электрофорез или масс-спектрометрия) могут быть использованы для анализа взаимодействия белок-белок при сохранении исходного взаимодействующего комплекса.

Гомобифункциональные аминореактивные сшивающие агенты могут быть добавлены к клеткам для сшивания потенциально взаимодействующих белков вместе, которые затем могут быть проанализированы после лизиса с помощью вестерн-блоттинга.Сшивающие агенты могут быть мембранопроницаемыми, такими как DSS, для сшивания внутриклеточных белков, или они могут быть непроницаемыми для мембраны, такими как BS3, для сшивания белков клеточной поверхности. Кроме того, некоторые сшивающие агенты могут быть расщеплены восстанавливающими агентами, такими как DSP или DTSSP, для обращения сшивок.

Альтернативно, гетеробифункциональные сшивающие агенты, которые содержат фотоактивируемую группу, такие как продукт SDA или Sulfo-SDA, могут быть использованы для фиксации временных взаимодействий, которые могут происходить, например, после определенного стимула.Фотоактивация также может происходить после метаболического мечения фотоактивируемыми аминокислотами, такими как L-фото-лейцин или L-фото-метионин.

Сайты сшивания между белками могут быть картированы с высокой точностью с использованием масс-спектрометрии, особенно если используется расщепляемый МС сшивающий агент, такой как DSSO или DSBU.


Анализ взаимодействия белков переноса меток

Перенос метки включает сшивание взаимодействующих молекул (т.е.е., белки наживки и жертвы) с меченым сшивающим агентом, а затем расщепляют связь между приманкой и добычей, так что метка остается прикрепленной к жертве. Этот метод особенно ценен из-за его способности идентифицировать белки, которые слабо или временно взаимодействуют с интересующим белком. Новые неизотопные реагенты и методы продолжают делать этот метод более доступным и простым в использовании для любого исследователя.

Экспериментальная стратегия переноса биотиновой метки Sulfo-SBED и анализа методом вестерн-блоттинга.


Дальневосточный блот-анализ

Подобно тому, как анализы «pull-down» отличаются от ко-IP в обнаружении белок-белковых взаимодействий с использованием меченых белков вместо антител, так и анализ дальнего вестерн-блоттинга отличается от анализа вестерн-блоттингом , поскольку выявляются белок-белковые взаимодействия путем инкубации белков, подвергнутых электрофорезу, с очищенным, меченым белком-приманкой вместо антитела, специфичного к целевому белку, соответственно.Термин «далеко» был принят, чтобы подчеркнуть это различие.

Схема дальнего вестерн-блоттинга для анализа белок-белковых взаимодействий. В этом примере меченый белок-приманка используется для зондирования переносящей мембраны или геля на предмет белка жертвы. После связывания антитело, конъюгированное с ферментом (пероксидаза хрена; HRP), которое нацелено на бирку-приманку, используется для обозначения взаимодействия, которое затем обнаруживается ферментативной хемилюминесценцией. Этот общий подход может быть скорректирован с помощью немаркированного белка приманки, который обнаруживается антителами, биотинилированного белка приманки, обнаруживаемого ферментно-конъюгированным стрептавидином, или меченного радиоактивным изотопом белка приманки, обнаруживаемого при экспонировании на пленке.


  1. Golemis E (2002) Взаимодействие белков и белков: руководство по молекулярному клонированию. Колд-Спринг-Харбор (Нью-Йорк): Лабораторный пресс Колд-Спринг-Харбор. p ix, 682.
  2. Phizicky EM, Fields S (1995) Белковые взаимодействия: методы обнаружения и анализа. Microbiol Rev 59: 94–123.
.

биология | Определение, история, концепции, отрасли и факты

Биология , изучение живых существ и процессов их жизнедеятельности. Эта область занимается всеми физико-химическими аспектами жизни. Современная тенденция к междисциплинарным исследованиям и объединению научных знаний и исследований из разных областей привела к значительному совпадению области биологии с другими научными дисциплинами. Современные принципы других областей - например, химии, медицины и физики - интегрированы с принципами биологии в таких областях, как биохимия, биомедицина и биофизика.

биология; микроскоп

Исследователь с помощью микроскопа исследует образец в лаборатории.

© Раду Разван / Fotolia

Популярные вопросы

Что такое биология?

Биология - это отрасль науки, изучающая живые организмы и их жизненные процессы. Биология охватывает различные области, включая ботанику, охрану, экологию, эволюцию, генетику, морскую биологию, медицину, микробиологию, молекулярную биологию, физиологию и зоологию.

Почему важна биология?

Где работают выпускники биологических специальностей?

Выпускники биологических специальностей могут работать на самых разных должностях, для некоторых из них может потребоваться дополнительное образование. Человек со степенью в области биологии может работать в сельском хозяйстве, здравоохранении, биотехнологии, образовании, охране окружающей среды, исследованиях, судебной медицине, политике, научном общении и во многих других областях.

Биология разделена на отдельные разделы для удобства изучения, хотя все подразделения взаимосвязаны по основным принципам.Таким образом, хотя существует обычай отделять изучение растений (ботаника) от исследования животных (зоология) и изучение структуры организмов (морфология) от функции (физиология), все живые существа имеют общие определенные биологические явления - например, различные способы воспроизводства, деления клеток и передачи генетического материала.

Биология часто рассматривается на основе уровней, которые имеют дело с фундаментальными единицами жизни. Например, на уровне молекулярной биологии жизнь рассматривается как проявление химических и энергетических преобразований, происходящих между многими химическими составляющими, составляющими организм.В результате разработки все более мощных и точных лабораторных инструментов и методов стало возможным понять и определить с высокой точностью и точностью не только конечную физико-химическую организацию (ультраструктуру) молекул в живом веществе, но и способ воспроизводства живого вещества. на молекулярном уровне. Особенно важным для этих достижений стал рост геномики в конце 20-го и начале 21-го веков.

Клеточная биология - это изучение клеток - фундаментальных единиц структуры и функций живых организмов.Впервые клетки были обнаружены в 17 веке, когда был изобретен составной микроскоп. До этого отдельные организмы изучались как единое целое в области, известной как биология организма; эта область исследований остается важной составляющей биологических наук. Популяционная биология имеет дело с группами или популяциями организмов, которые населяют данную территорию или регион. На этот уровень включены исследования ролей, которые определенные виды растений и животных играют в сложных и самовоспроизводящихся взаимосвязях, существующих между живым и неживым миром, а также исследования встроенных средств управления, которые естественным образом поддерживают эти отношения. .Эти общие уровни - молекулы, клетки, целые организмы и популяции - могут быть далее подразделены для изучения, что дает начало таким специализациям, как морфология, таксономия, биофизика, биохимия, генетика, эпигенетика и экология. Область биологии может быть особенно связана с исследованием одного вида живых существ - например, изучение птиц в орнитологии, изучение рыб в ихтиологии или изучение микроорганизмов в микробиологии.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.Подпишитесь сегодня

Основные понятия биологии

Биологические принципы

Концепция гомеостаза - что живые существа поддерживают постоянную внутреннюю среду - была впервые предложена в XIX веке французским физиологом Клодом Бернаром, который заявил, что «все жизненные механизмы, как бы они ни были разнообразны, имеют только одну цель: сохранение постоянные условия жизни ».

Как первоначально задумал Бернар, гомеостаз применялся к борьбе отдельного организма за выживание.Позднее эта концепция была расширена, чтобы включить любую биологическую систему от клетки до всей биосферы, все области Земли, населенные живыми существами.

Единство

Все живые организмы, независимо от их уникальности, имеют определенные общие биологические, химические и физические характеристики. Все они, например, состоят из основных единиц, известных как клетки, и одних и тех же химических веществ, которые при анализе обнаруживают заметное сходство даже в таких разрозненных организмах, как бактерии и люди.Более того, поскольку действие любого организма определяется тем, как взаимодействуют его клетки, и поскольку все клетки взаимодействуют практически одинаково, основное функционирование всех организмов также схоже.

клеток

Клетки животных и растений содержат мембраносвязанные органеллы, включая отдельное ядро. Напротив, бактериальные клетки не содержат органелл.

Encyclopædia Britannica, Inc.

Существует не только единство основной живой субстанции и функционирования, но и единство происхождения всего живого.Согласно теории, предложенной в 1855 году немецким патологом Рудольфом Вирховым, «все живые клетки возникают из уже существующих живых клеток». Эта теория кажется верной для всех живых существ в настоящее время при существующих условиях окружающей среды. Если, однако, жизнь зарождалась на Земле более одного раза в прошлом, тот факт, что все организмы имеют одинаковую базовую структуру, состав и функции, может указывать на то, что только один первоначальный тип преуспел.

Общее происхождение жизни могло бы объяснить, почему у людей или бактерий - и во всех промежуточных формах жизни - одно и то же химическое вещество, дезоксирибонуклеиновая кислота (ДНК), в форме генов определяет способность всего живого вещества воспроизводить себя. именно так и для передачи генетической информации от родителей к потомкам.Кроме того, механизмы этой передачи следуют шаблону, который одинаков для всех организмов.

Всякий раз, когда происходит изменение гена (мутация), происходит какое-то изменение в организме, который содержит этот ген. Именно это универсальное явление порождает различия (вариации) в популяциях организмов, из которых природа отбирает для выживания тех, которые лучше всего способны справиться с изменяющимися условиями окружающей среды.

.

Молекулярная структура и функции - возможности в биологии

Биологические макромолекулы - это машины

Все биологические функции зависят от событий, происходящих на молекулярном уровне. Эти события управляются, модулируются или обнаруживаются сложными биологическими машинами, которые сами по себе представляют собой большие молекулы или кластеры молекул. Включены белки, нуклеиновые кислоты, углеводы, липиды и их комплексы. Многие области биологической науки сосредоточены на сигналах, обнаруживаемых этими машинами, или на выходе этих машин.Область структурной биологии изучает свойства и поведение самих машин. Конечная цель этой области состоит в том, чтобы иметь возможность предсказывать структуру, функции и поведение машин по их химическим формулам, используя основные принципы химии и физики, а также знания, полученные в результате исследований других машин. Хотя мы все еще далеки от этих целей, за последние два десятилетия был достигнут огромный прогресс. Благодаря недавним достижениям, в первую очередь в технологии рекомбинантной ДНК, информатике и биологической инструментарии, мы должны начать реализовывать цели структурной биологии в течение следующих двух десятилетий.

Большая часть биологических исследований все еще начинается с описательной науки. Любопытное явление в каком-то живом организме вызывает наш интерес, возможно, потому, что оно напоминает какое-то ранее известное явление, возможно, потому, что оно необъяснимо в любых доступных нам в настоящее время терминах. Богатство и разнообразие биологических явлений привели к опасности биологии, перегруженной описаниями явлений и лишенной каких-либо объединяющих принципов. В отличие от остальной биологии структурная биология находится в уникальном положении, поскольку ее объединяющие принципы широко известны.Они происходят из основ молекулярной физики и химии. Строгая физическая теория и мощные экспериментальные методы уже обеспечивают глубокое понимание свойств малых молекул. Те же принципы, в основном неизменные, должны быть достаточными для объяснения и предсказания свойств более крупных молекул. Например, белки состоят из линейных цепочек аминокислот, только 20 различных типов которых регулярно встречаются в белках. Свойства белков должны определяться аминокислотами, которые они содержат, и порядком, в котором они связаны.Хотя эти свойства могут стать сложными и далеки от каких-либо свойств, присущих отдельным аминокислотам, существование ограниченного набора фундаментальных строительных блоков ограничивает конечные функциональные свойства белков.

Нуклеиновые кислоты потенциально проще белков, поскольку они состоят только из четырех основных типов строительных блоков, называемых основаниями, связанных друг с другом цепочкой сахаров и фосфатов. Последовательность этих оснований в ДНК организма составляет его генетическую информацию.Эта последовательность определяет все белки, которые может продуцировать организм, все химические реакции, которые он может проводить, и, в конечном итоге, все поведение, которое организм может проявлять в ответ на окружающую среду.

Углеводы и липиды занимают промежуточное положение по сложности между нуклеиновыми кислотами и белками. Сейчас о них известно меньше, но этот дефицит быстро устраняется.

В настоящее время в центре внимания структурной биологии находится трехмерное расположение атомов, составляющих большую биологическую молекулу.Два десятилетия назад эта информация была доступна только для нескольких белков и одной нуклеиновой кислоты, и каждая определенная трехмерная структура была вехой в биологии. Сегодня такие структуры определяются обычным образом, и мы начали видеть структуры не только отдельных больших молекул, но и целых массивов таких молекул. Каждая из первых трехмерных структур соответствовала нашим ожиданиям, основанным на фундаментальной физике и химии. Однако большинство структур, определенных впоследствии, не были связаны между собой, и по мере того, как рентгеновская кристаллография выявляла все больше и больше структур, начал появляться большой объем описательных структурных данных.На основе новых данных начали появляться модели трехмерных структур; Теперь ясно, что большинство, если не все структуры в конечном итоге попадут в рациональные категории.

Основная тема структурной биологии - отношение молекулярной структуры к функции

Поскольку биологи в конечном итоге заинтересованы в функции, структурная биология часто является средством достижения цели. Роль, которую играет структурная биология, несколько различается в зависимости от наших предварительных знаний о функциях конкретных исследуемых молекул.Там, где уже существуют значительные знания о функциях, определение трехмерной структуры почти неизбежно привело к серьезному дополнительному пониманию функции. Например, трехмерная структура гемоглобина, белка, переносящего кислород в нашем кровотоке, помогла нам понять, как мы адаптируемся к изменениям высоты, как рыбы контролируют свою глубину и как большое количество мутантных гемоглобинов человека связаны с отдельные симптомы заболевания.

Часто знания о структуре могут существенно улучшить наше понимание функций, даже если предварительные знания отрывочны.Например, ранние биологические эксперименты показали, что ДНК содержит генетическую информацию, но эти эксперименты не дали реальных ключей к разгадке того, как молекула может хранить информацию или как эта информация может передаваться от клетки к клетке или от поколения к поколению. Структура ДНК, в которой основания расположены между двумя разными цепями, сразу же привела к правильным выводам о механизме хранения и передачи информации. Информация располагалась в последовательности оснований; очевидная избыточность двух цепей с эквивалентной (дополнительной) информацией означала, что каждая из них может служить для передачи информации в дочернюю цепочку.Кроме того, избыточность предлагала естественную защиту от потери информации. Даже если одна нить повреждена (химическими веществами или излучением), в подавляющем большинстве случаев информация о другой нити может быть использована для восстановления недостающей информации. В самом деле, клетки разработали действительно элегантные механизмы, позволяющие определять, какая цепь содержит исходную неповрежденную информацию; такие модели могут предоставить полезные парадигмы для нынешней озабоченности человека электронной обработкой информации.

Конечная проблема структурной биологии возникает, когда у нас есть структура, но нет никаких подсказок относительно ее функции.Из-за значительного прогресса в нашей способности определять структуры эта проблема, вероятно, будет возникать все чаще. Было несколько замечательных случаев, когда ограниченная структурная информация, такая как знание последовательности аминокислотных остатков в белке, без какой-либо трехмерной структурной информации, привела к значительному пониманию функции. В целом, однако, наша текущая способность предсказывать функции по структуре в отсутствие предшествующих биологических ключей ограничена, и одна из наших основных потребностей - улучшить наши предсказательные способности.

Биологическая структура организована иерархически

Структуры больших биологических молекул, таких как белки и нуклеиновые кислоты, сложны. Описывать эти структуры словами непрактично или полезно. Фактически, узкоспециализированная компьютерная графика

.

Biology News - ScienceDaily

Индийские окаменелости подтверждают новую гипотезу происхождения копытных млекопитающих

7 ноября 2020 г. - Новое исследование описывает семейство окаменелостей, которое проливает свет на происхождение периссодактилей - группы млекопитающих, в которую входят лошади, носороги и тапиры. Он дает представление о спорных ...


Миграция и линька влияют на изменение окраски птиц

7 ноября 2020 г. - Перед большим путешествием многие птицы линяют свои яркие перья, заменяя их более приглушенной палитрой.Наблюдение за этой линькой заставило ученых задуматься о том, как изменение цвета перьев связано с ...


Как клеточные процессы собирают и сбрасывают поврежденные белки

7 ноября 2020 г. - Сообщая о неожиданных процессах, химики заявляют, что они открыли, как фермент, известный как UCh47, регулирует переработку клеточных отходов ...


Генеалогическое древо древних крокодилов раскрывает неожиданные повороты и повороты

6 ноября 2020 г. - Несмотря на 300 лет исследований и недавний ренессанс в изучении их биологического состава, таинственные мародерствующие телеозавроиды так и остались неуловимыми.Научное понимание ...


6 ноября 2020 г. - Палеонтологи впервые описали почти полный скелет молодого платеозавра и обнаружили, что он очень похож на своих родителей даже в молодом возрасте. Это могло быть ...


Визуализация живых, движущихся клеток с высоким разрешением с использованием плазмонных метаповерхностей

6 ноября 2020 г. - Исследователи продемонстрировали, что размещение клеток на плазмонной метаповерхности самособирающейся наночастицы золота может улучшить разрешение изображений живых клеток, сделанных в реальном времени под углом...


phyloFlash: новое программное обеспечение для быстрого и простого анализа микробов в окружающей среде

6 ноября 2020 г. - Исследователи разрабатывают удобный метод реконструкции и анализа рРНК SSU из необработанного метагенома ...


Пластмассы и повышение уровня CO2 могут создать комбинированную угрозу морской среде

6 ноября 2020 г. - Ученые обнаружили, что после трех недель погружения в океан бактериальное разнообразие на пластиковых бутылках было в два раза больше, чем в образцах, собранных из окружающей среды...


Покрытые сахаром вирусные белки захватывают и убирают клетки

6 ноября 2020 г. - Многие вирусы, включая коронавирусы, имеют защитный внешний слой, состоящий из белков, жиров и сахаров. Новое исследование показывает, что нацеливание на производство сахара может дать противовирусное средство широкого спектра действия ...


Экология животных в глобальном масштабе выявляет изменения в поведении в ответ на изменение климата

5 ноября 2020 г. - Биологи разработали архив данных исследований перемещений животных по всей Арктике и субарктике и провели три тематических исследования, которые выявили удивительные закономерности и связи между ними...


Самый ранний образец скорострельного языка, найденный у вымерших амфибий "странных и чудесных"

5 ноября 2020 г. - Окаменелости причудливых бронированных амфибий, известных как albanerpetontids, представляют собой старейшее свидетельство языка в стиле рогатки, новое исследование ...


Нанотела лам могут быть мощным оружием против COVID-19

5 ноября 2020 г. - Исследователи сообщают о новом методе извлечения крошечных, но чрезвычайно мощных фрагментов антител SARS-CoV-2 из лам, которые можно превратить в ингаляционные терапевтические препараты с потенциалом предотвращения...


Ген у мышей контролирует тягу к пище, желание заниматься спортом

5 ноября 2020 г. - Исследователи Национального института здравоохранения обнаружили у мышей ген, контролирующий тягу к жирной и сладкой пище и желание заниматься спортом. Ген Prkar2a высоко экспрессируется в ...


Выявлено, что загадочная молекула в бактериях служит охранником

5 ноября 2020 г. - Необычные структуры в бактериальных клетках препятствуют распространению вирусной инфекции; список новых может обеспечить улучшенные биотехнологии...


Изменения температуры воды влияют на пищевые привычки личинок тунца на критической стадии жизни

5 ноября 2020 г. - Небольшие изменения температуры океана могут оказать существенное влияние на пищевые привычки черного тунца на личиночной стадии развития, когда поиск пищи и быстрый рост имеют решающее значение для ...


Обнаружение формы генома SARS-CoV-2 после заражения может помочь в разработке новых методов лечения COVID-19

Ноябрь5 февраля 2020 г. - Ученые обнаружили, как геном SARS-CoV-2 - коронавируса, вызывающего COVID-19, - использует оригами генома для заражения и успешного размножения внутри хозяина ...


Нервные системы насекомых вдохновляют на создание эффективных систем искусственного интеллекта будущего

5 ноября 2020 г. - Исследование исследует функции нервной системы плодовой мушки в поиске пищи / результаты, ценные для разработки и контроля искусственных ...


Биологические часы и дополнительные пары генов контролируют важные функции растений

Ноябрь5 февраля 2020 г. - Новое понимание циркадных ритмов может стать ключом к созданию более сильных засухоустойчивых культур перед лицом климата ...


Повторная сенсибилизация антибиотиков «последней инстанции» для лечения инфекций

5 ноября 2020 г. - Группа исследователей обнаруживает, что путем перепрофилирования антиревматического препарата золота, ауранофина (AUR), антибиотики «последней инстанции» могут быть повторно сенсибилизированы для лечения инфекций, вызванных ...


Световое загрязнение в ночное время серьезно нарушает репродуктивный цикл кораллов

Ноябрь5 августа 2020 г. - Изучая репродуктивный цикл двух видов кораллов из Индо-Тихого океана в течение трех месяцев, исследователи обнаружили, что световое загрязнение вызывает задержку гаметогенеза и ...


.

Смотрите также

 
 
© 2020 Спортивный клуб "Канку". Все права защищены.