Типы белков их функции и примеры


Виды белков, их функции и структура

По теории Опарина-Холдейна жизнь на нашей планете зародилась из коацерватной капельки. Она же представляла собой молекулу белка. То есть следует вывод, что именно эти химические соединения - основа всего живого, что существует сегодня. Но что же собой представляют белковые структуры? Какую роль сегодня они играют в организме и жизни людей? Какие виды белков существуют? Попробуем разобраться.

Белки: общее понятие

С точки зрения химического строения, молекула рассматриваемого вещества представляет собой последовательность аминокислот, соединенных между собой пептидными связями.

Каждая аминокислота имеет две функциональные группы:

  • карбоксильную -СООН;
  • амино-группу -NH2.

Именно между ними и происходит формирование связи в разных молекулах. Таким образом, пептидная связь имеет вид -СО-NH. Молекула белка может содержать сотни и тысячи таких группировок, это будет зависеть от конкретного вещества. Виды белков очень разнообразны. Среди них есть и те, которые содержат незаменимые для организма аминокислоты, а значит должны поступать в организм с пищевыми продуктами. Существуют такие разновидности, которые выполняют важные функции в мембране клетки и ее цитоплазме. Также выделяют катализаторы биологической природы - ферменты, которые тоже являются белковыми молекулами. Они широко используются и в быту человека, а не только участвуют в биохимических процессах живых существ.

Молекулярная масса рассматриваемых соединений может колебаться от нескольких десятков до миллионов. Ведь количество мономерных звеньев в большой полипептидной цепи неограниченно и зависит от типа конкретного вещества. Белок в чистом виде, в его нативной конформации, можно увидеть при рассмотрении куриного яйца в сыром виде. Светло-желтая, прозрачная густая коллоидная масса, внутри которой располагается желток - это и есть искомое вещество. То же самое сказать об обезжиренном твороге, Данный продукт также является практически чистым белком в его натуральном виде.

Однако не все рассматриваемые соединения имеют одинаковое пространственное строение. Всего выделяют четыре организации молекулы. Виды структур белка определяют его свойства и говорят о сложности строения. Также известно, что более пространственно запутанные молекулы подвергаются тщательной переработке в организме человека и животных.

Виды структур белка

Всего их выделяют четыре. Рассмотрим, что собой представляет каждая из них.

  1. Первичная. Представляет собой обычную линейную последовательность аминокислот, соединенных пептидными связями. Никаких пространственных закручиваний, спирализации нет. Количество входящих в полипептид звеньев может доходить до нескольких тысяч. Виды белков с подобной структурой - глицилаланин, инсулин, гистоны, эластин и другие.
  2. Вторичная. Представляет собой две полипептидные цепи, которые скручиваются в виде спирали и ориентируются по направлению друг к другу образованными витками. При этом между ними возникают водородные связи, удерживающие их вместе. Так формируется единая белковая молекула. Виды белков такого типа следующие: лизоцим, пепсин и другие.
  3. Третичная конформация. Представляет собой плотно упакованную и компактно собранную в клубок вторичную структуру. Здесь появляются другие типы взаимодействия, помимо водородных связей - это и ван-дер-ваальсово взаимодействие и силы электростатического притяжения, гидрофильно-гидрофобный контакт. Примеры структур - альбумин, фиброин, белок шелка и прочие.
  4. Четвертичная. Самая сложная структура, представляющая собой несколько полипептидных цепей, скрученных в спираль, свернутых в клубок и объединенных все вместе в глобулу. Такие примеры, как инсулин, ферритин, гемоглобин, коллаген, иллюстрируют собой как раз такую конформацию белков.

Если рассматривать все приведенные структуры молекул детально с химической точки зрения, то анализ займет много времени. Ведь на самом деле чем выше конфигурация, тем сложнее и запутаннее ее строение, тем больше типов взаимодействий наблюдается в молекуле.

Денатурация белковых молекул

Одним из самых важных химических свойств полипептидов является их способность разрушаться под влиянием определенных условий или химических агентов. Так, например, широко распространены разные виды денатурации белков. Что это за процесс? Он заключается в разрушении нативной структуры белка. То есть если изначально молекула имела третичную структуру, то после действия специальными агентами она разрушится. Однако при этом последовательность аминокислотных остатков остается в молекуле неизменной. Денатурированные белки быстро теряют свои физические и химические свойства.

Какие реагенты способны привести к процессу разрушения конформации? Таких несколько.

  1. Температура. При нагревании происходит постепенное разрушение четвертичной, третичной, вторичной структуры молекулы. Зрительно это можно наблюдать, например, при жарке обычного куриного яйца. Образующийся "белок" - это первичная структура полипептида альбумина, который был в сыром продукте.
  2. Радиация.
  3. Действие сильными химическими агентами: кислотами, щелочами, солями тяжелых металлов, растворителями (например, спиртами, эфирами, бензолом и прочими).

Данный процесс иногда еще называют плавлением молекулы. Виды денатурации белков зависят от агента, при действии которого она наступила. При этом в некоторых случаях имеет место процесс, обратный рассмотренному. Это ренатурация. Не все белки способны восстанавливать обратно свою структуру, однако значительная их часть может это делать. Так, химики из Австралии и Америки осуществили ренатурацию вареного куриного яйца при помощи некоторых реагентов и способа центрифугирования.

Этот процесс имеет значение для живых организмов при синтезе полипептидных цепочек рибосомами и рРНК в клетках.

Гидролиз белковой молекулы

Наравне с денатурацией, для белков характерно еще одно химическое свойство - гидролиз. Это также разрушение нативной конформации, но не до первичной структуры, а полностью до отдельных аминокислот. Важная часть пищеварения - гидролиз белка. Виды гидролиза полипептидов следующие.

  1. Химический. Основан на действии кислот или щелочей.
  2. Биологический или ферментативный.

Однако суть процесса остается неизменной и не зависит от того, какие виды гидролиза белков имеют место быть. В результате образуются аминокислоты, которые транспортируются по всем клеткам, органам и тканям. Дальнейшее их преобразование заключается в участии синтеза новых полипептидов, уже тех, что необходимы конкретному организму.

В промышленности процесс гидролиза белковых молекул используют как раз для получения нужных аминокислот.

Функции белков в организме

Различные виды белков, углеводов, жиров являются жизненно необходимыми компонентами для нормальной жизнедеятельности любой клетки. А значит и всего организма в целом. Поэтому во многом их роль объясняется высокой степенью значимости и повсеместной распространенности внутри живых существ. Можно выделить несколько основных функций полипептидных молекул.

  1. Каталитическая. Ее осуществляют ферменты, которые имеют белковую природу строения. О них скажем позже.
  2. Структурная. Виды белков и их функции в организме прежде всего влияют на структуру самой клетки, ее форму. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.
  3. Регуляторная. Данная функция проявляется в участии полипептидов в таких процессах, как: транскрипция, трансляция, клеточный цикл, сплайсинг, считывание мРНК и прочих. Во всех них они играют важную роль регулировщика.
  4. Сигнальная. Данную функцию выполняют белки, находящиеся на мембране клеток. Они передают различные сигналы от одной единицы к другой, и это приводит к сообщению тканей между собой. Примеры: цитокины, инсулин, факторы роста и прочие.
  5. Транспортная. Некоторые виды белков и их функции, которые они выполняют, являются просто жизненно необходимыми. Так происходит, например, с белком гемоглобином. Он осуществляет транспорт кислорода от клетки к клетке в составе крови. Для человека он незаменим.
  6. Запасная или резервная. Такие полипептиды накапливаются в растениях и яйцеклетках животных как источник дополнительного питания и энергии. Пример - глобулины.
  7. Двигательная. Очень важная функция, особенно для простейших организмов и бактерий. Ведь они способны передвигаться только при помощи жгутиков или ресничек. А эти органоиды по своей природе не что иное, как белки. Примеры таких полипептидов следующие: миозин, актин, кинезин и прочие.

Очевидно, что функции белков в организме человека и других живых существ очень многочисленны и немаловажны. Это еще раз подтверждает, что без рассматриваемых нами соединений невозможна жизнь на нашей планете.

Защитная функция белков

Полипептиды могут защищать от разных воздействий: химических, физических, биологических. Например, если организму угрожает опасность в виде вируса или бактерии, имеющих чужеродную природу, то иммуноглобулины (антитела) вступают с ними "в бой", выполняя защитную роль.

Если говорить о физических воздействиях, то здесь большую роль играют, например, фибрин и фибриноген, которые участвуют в свертывании крови.

Белки пищевые

Виды пищевого белка следующие:

  • полноценные - те, что содержат все необходимые для организма аминокислоты;
  • неполноценные - те, в которых находится неполный аминокислотный состав.

Однако для организма человека важны и те и другие. Особенно первая группа. Каждый человек, особенно в периоды интенсивного развития (детский и юношеский возраст) и полового созревания должен поддерживать постоянный уровень протеинов в себе. Ведь мы уже рассмотрели функции, которые выполняют эти удивительные молекулы, и знаем, что практически ни один процесс, ни одна биохимическая реакция внутри нас не обходится без участия полипептидов.

Именно поэтому необходимо каждый день потреблять суточную норму протеинов, которые содержатся в следующих продуктах:

  • яйцо;
  • молоко;
  • творог;
  • мясо и рыба;
  • бобы;
  • соя;
  • фасоль;
  • арахис;
  • пшеница;
  • овес;
  • чечевица и прочие.

Если потреблять в день 0,6 г полипептида на один кг веса, то у человека никогда не будет недостатка в этих соединениях. Если же длительное время организм недополучает необходимых белков, то наступает заболевание, имеющее название аминокислотного голодания. Это приводит к сильному нарушению обмена веществ и, как следствие, многим другим недугам.

Белки в клетке

Внутри самой маленькой структурной единицы всего живого - клетки - также находятся белки. Причем выполняют они там практически все вышеперечисленные свои функции. В первую очередь формируют цитоскелет клетки, состоящий из микротрубочек, микрофиламентов. Он служит для поддержания формы, а также для транспорта внутри между органоидами. По белковым молекулам, как по каналам или рельсам, движутся различные ионы, соединения.

Немаловажна роль белков, погруженных в мембрану и находящихся на ее поверхности. Здесь они и рецепторные, и сигнальные функции выполняют, принимают участие в строительстве самой мембраны. Стоят на страже, а значит играют защитную роль. Какие виды белков в клетке можно отнести к этой группе? Примеров множество, приведем несколько.

  1. Актин и миозин.
  2. Эластин.
  3. Кератин.
  4. Коллаген.
  5. Тубулин.
  6. Гемоглобин.
  7. Инсулин.
  8. Транскобаламин.
  9. Трансферрин.
  10. Альбумин.

Всего насчитывается несколько сотен различных видов протеинов, которые постоянно передвигаются внутри каждой клетки.

Виды белков в организме

Их, конечно же, огромное разнообразие. Если же попытаться как-то разделить все существующие протеины на группы, то может получиться примерно такая классификация.

  1. Глобулярные белки. Это такие, которые представлены третичной структурой, то есть плотно упакованной глобулой. Примеры таких структур следующие: иммуноглобулины, значительная часть ферментов, многие гормоны.
  2. Фибриллярные белки. Представляют собой строго упорядоченные нити, имеющие правильную пространственную симметрию. К данной группе относятся протеины с первичной и вторичной структурой. Например, кератин, коллаген, тропомиозин, фибриноген.

Вообще, можно взять за основу множество признаков для классификации белков, находящихся в организме. Единой пока не существует.

Ферменты

Биологические катализаторы белковой природы, которые значительно ускоряют все происходящие биохимические процессы. Нормальный обмен веществ просто невозможен без этих соединений. Все процессы синтеза и распада, сборка молекул и их репликация, трансляция и транскрипция и прочие осуществляются под воздействием специфического вида фермента. Примерами этих молекул могут служить:

  • оксидоредуктазы;
  • трансферазы;
  • каталазы;
  • гидролазы;
  • изомеразы;
  • лиазы и прочие.

Сегодня ферменты используются и в быту. Так, при производстве стиральных порошков часто используют так называемые энзимы - это и есть биологические катализаторы. Они улучшают качество стирки при соблюдении указанного температурного режима. Легко связываются с частицами грязи и выводят их с поверхности тканей.

Однако из-за белковой природы энзимы не переносят слишком горячую воду или соседство с щелочными или кислотными препаратами. Ведь в этом случае произойдет процесс денатурации.

функции, синтез, строение, свойства, продукты богатые белком, виды, состав и норма в день

Содержание статьи:

  1. Что такое белок
  2. Виды белков
  3. Синтез белка
  4. Состав белков
  5. Свойства
  6. Функции белков
  7. Строение
  8. Переваривание белков
  9. Обмен белков в организме
  10. Продукты богатые белком
  11. Норма в день для организма
  12. Усваиваемость белка
  13. Вред белков

Белки – это важные компоненты, которые имеют большое значение для нормальной работы организма. Источниками этих веществ являются животные и растительные продукты. Чтобы белковые элементы полноценно усваивались организмом, необходимо правильно употреблять их.

Белки (белок)

Что такое белок

Белок - это органическое соединение, которое включает альфа-аминокислоты. Они соединяются в цепь пептидной связью. В живых организмах белковый состав определяется генетическим кодом. В процессе выработки этих веществ обычно принимает участие 20 аминокислот. Их сочетания создают белковые молекулы, которые отличатся своими свойствами.

Виды белков

Виды белков

Виды белков бывают следующие:

  1. Белки куриных яиц. Они усваиваются лучше всего и считаются эталонными. Всем известно, что яйца включают белок, который почти на 100 % состоит из альбумина, и желток.
  2. Казеин. При попадании в желудок вещество превращается в сгусток, который долгое время переваривается. Это обеспечивает невысокую скорость расщепления белка, что провоцирует стабильное снабжение организма аминокислотами.
  3. Белки молочной сыворотки. Такие компоненты расщепляются быстрее всего. Уровень аминокислот и пептидов в крови увеличивается уже в течение 1 часа после употребления таких продуктов. При этом кислотообразующая функция желудка остается неизменной.
  4. Соевые белки. Такие вещества имеют сбалансированный состав важных аминокислот. После употребления подобных продуктов снижается содержание холестерина. Потому такую пищу стоит есть людям с лишним весом. При этом главным минусом соевых белков считается наличие ингибитора пищеварительного фермента трипсина.
  5. Растительные белки. Такие вещества усваиваются человеческим организмом достаточно плохо. Их клетки обладают толстыми оболочками, которые не поддаются влиянию пищеварительного сока. Также проблемы с усвоением обусловлены наличием ингибиторов пищеварительных ферментов в отдельных растениях.
  6. Рыбный белок. Изолят рыбного белка достаточно медленно расщепляется до состояния аминокислот.

Синтез белка

Синтез белка

Синтез белка осуществляется в особых частицах – рибосомах.

Этот процесс происходит в несколько стадий:

  • активация аминокислот;
  • инициация белковой цепи;
  • элонгация;
  • терминация;
  • сворачивание и процессинг.

Состав белков

Состав белков

Состав белков представляет собой линейные полимеры, которые включают остатки α-L-аминокислот. Также в белковых молекулах могут присутствовать модифицированные аминокислотные остатки и составляющие неаминокислотной природы.

Аминокислоты обозначают сокращениями, включающими 1 или 3 буквы. Белки, которые имеют длину от 2 до нескольких десятков аминокислотных остатков, называют пептидами. Если наблюдается высокая степень полимеризации, их именуют белками. Однако такое деление считается достаточно условным.

Свойства белков

Свойства белков

Для белков характерны следующие свойства:

  1. Различная растворимость в воде. Белковые элементы, которые растворяются, приводят к формированию коллоидных растворов.
  2. Гидролиз. Под влиянием ферментов или растворов минеральных кислот разрушается первичное строение белка и формируется смесь аминокислот.
  3. Денатурация. Под этим термином понимают частичное или полное разрушение структуры белковой молекулы. Этот процесс может происходить под воздействием разных факторов – повышенных температур, растворов солей тяжелых металлов, кислот или щелочей, радиоактивного излучения, отдельных органических веществ.

Функции белков

 Рассмотрим детальнее ряд важных функций белков:

  1. Строительная. Такие вещества принимают участие в формировании клеток и внеклеточных элементов. Они присутствуют в составе мембранклеток, сухожилий, волос.
  2. Транспортная. Белковый компонент крови, который называется гемоглобином, присоединяет кислород и распространяет его в разные ткани и органы. После чего обратно переносит углекислый газ.
  3. Регуляторная. Гормоны белкового характера участвуют в обменных процессах. Инсулин отвечает за регуляцию содержания глюкозы в крови, обеспечивает выработку гликогена, повышает трансформацию углеводов в жиры.
  4. Защитная. При попадании в организм инородных объектов или микроорганизмов вырабатываются особенные белки – антитела. Они помогают связать и нейтрализовать антигены. Фибрин, который вырабатывается из фибриногена, останавливает кровотечения.
  5. Двигательная. Существуют особые сократительные белковые элементы. К ним относят актин и миозин. Эти веществаобеспечивают сокращение мышечных тканей.
  6. Сигнальная. В поверхностной клеточной мембране присутствуют белковые молекулы, которые могут менять третичную структуру под влиянием внешних факторов. Это помогает принимать сигналы извне и передавать в клетку команды.
  7. Запасающая. У животных белковые вещества обычно не запасаются. К исключениям относят яичный альбумин и казеин, который присутствует в молоке. При этом белки способствуют скоплению определенных веществ. Распад гемоглобина приводит к тому, что железо не выводится, а сохраняется. Благодаря этому формируется комплекс с ферритином.
  8. Энергетическая. Распад 1 г белка сопровождается синтезом 17,6 кДж энергии. Вначале белковые элементы распадаются до аминокислот, а затем – до конечных продуктов. В результате вырабатывается вода, аммиак и углекислый газ. При этом белки применяются в качестве источника энергии лишь в том случае, если остальные – израсходованы.
  9. Каталитическая. Это одна из наиболее важных функций белковых элементов. За нее отвечают ферменты, которые активизируют биохимические процессы в клеточных структурах.

Строение белков

Строение белков

Среди органических веществ белки, которые называются биополимерами, считаются самыми многочисленными. Они отличаются разнообразием. На долю этих веществ приходится 50-80 % сухой массы клетки.

Белковые молекулы отличаются большими размерами. Потому их нередко именуют макромолекулами. В строение белков входят углерод, водород, азот, кислород. Помимо этого, в них могут присутствовать сера, железо, фосфор.

Белки отличаются числом – от 100 до нескольких тысяч, составом, последовательностью мономеров. В качестве мономеров выступают аминокислоты.

Переваривание белков

Переваривание белков

Белки усваиваются в желудке и тонком кишечнике. Процесс переваривания представляет собой гидролитическое расщепление белков до аминокислот.

Он имеет определенные особенности:

  • протеолитические ферменты продуцируются в неактивном состоянии;
  • активирование наблюдается в просвете пищеварительного тракта за счет частичного протеолиза;
  • протеазы пищеварительного тракта характеризуются субстратной специфичностью – они могут относиться к эндопептидам или экзопептидазам.

Основным ферментом желудка, который расщепляет белки, считается пепси. Он синтезируется в неактивном состоянии и представляет собой профермент пепсиноген. Под воздействием соляной кислоты наблюдается частичный протеолиз пепсиногена. В результате появляется активная форма – пепсин.

Обмен белков в организме

Обмен белков в организме

Обмен белков в организме значительно сложнее, чем метаболизм липидов или углеводов. Жирные кислоты попадают в клетки почти в исходном виде, а углеводы – служат источником энергии. При этом основной строитель мышц претерпевает немало изменений в организме. На отдельных этапах белок преобразуется в углеводы. Как следствие, вырабатывается энергия.

Существует несколько этапов белкового обмена, для каждого из которых характерны определенные особенности:

  1. Попадание белков в организм. Под действием слюны происходит расщепление связей гликогена. Как следствие, формируется глюкоза, доступная для усвоения. Оставшиеся ферменты запечатываются. На этой стадии белки, которые присутствуют в продуктах, распадаютсяна отдельные элементы.Впоследствии они будут перевариваться.
  2. Переваривание. Под действием панкреатина и остальных ферментов наблюдается последующая денатурация до белков первого порядка. Организм способен получать аминокислоты исключительно из простейших белковых цепей. Для этого он вырабатывает кислоту. Это облегчает расщепление веществ.
  3. Расщепление на аминокислоты. Под действием клеток слизистых оболочек кишечника денатурированные белки попадают в кровь. Простой белок преобразуется организмом в аминокислоты.
  4. Расщепление до энергии. Под действием большого количества заменителей инсулина и ферментов для усваивания углеводов белок трансформируется в глюкозу. При нехватке энергии организм не выполняет денатурацию белка, а сразуегорасщепляет. В результате вырабатывается чистая энергия.
  5. Перераспределение аминокислот. Белковые элементы циркулируют в системном кровотоке и под действием инсулина попадают во все клетки. Как следствие, образуются требуемые аминокислотные связи. По мере распространения белков по организму происходит восстановление фрагментов мышечных элементов и структур, которые связаны со стимуляцией выработки, работой мозга, дальнейшей ферментацией.
  6. Образование новых белковых структур. Аминокислоты связываются с микроразрывами в мышцах и приводят к созданию новых тканей. Как следствие, наблюдается гипертрофия мышц. Аминокислоты в требуемом составе трансформируются в мышечно-белковую ткань.
  7. Обмен белков. При избытке таких структур под влиянием инсулина они снова проникают в систему кровообращения. Это приводит к формированию новых структур. При существенном напряжении в мышцах, длительном голодании или в период заболевания организм использует белки для компенсации недостатка аминокислот в остальных тканях.
  8. Перемещение липидных структур. Белки, которые соединяются в фермент липазу, способствуют перемещению и перевариванию с желчью полинасыщенных жирных кислот. Эти элементы принимают участие в перемещении жиров и выработке холестерина. С учетом состава аминокислот белки могут синтезироваться в полезный или вредный холестерин.
  9. Выведение окисленных продуктов. Использованные аминокислоты покидают организм с продуктами обмена. Мышцы, которые повреждаются вследствие нагрузок, тоже выводятся из организма.

Продукты богатые белком

Продукты богатые белком

Существует довольно много источников таких элементов. Животные продукты богатые белком, бывают следующие:

  1. Куриное мясо. 100 г продукта включает около 20 г белков. При этом такое мясо почти не содержит жира. Это актуально для людей, которые контролируют свой вес или занимаются спортом.
  2. Рыба. Самыми ценными источниками белка считаются тунец и лосось. Помимо этого, в продуктах имеются ценные кислоты омега-3, которые обеспечивают стабилизацию функций сердца и улучшают настроение.
  3. Свинина. В зависимости от жирности мяса в 100 г продукта может присутствовать 11-16 г белков. Также свинина включает витамины группы В.
  4. Яйца. В 1 яйце присутствует 6 г белка. Также продукт включает витамин В12 и холин.
  5. Говядина. На 100 г продукта приходится 19 г белков. Также говядина включает железо, карнитин и креатин

К растительным источникам белков стоит отнести следующее:

  1. Бобовые. Эти продукты включают большое количество белков. 100 г гороха содержит 23 г этих компонентов, а в сое присутствует 34 г белков.
  2. Орехи. Они представляют собой ценные источники белков и включают ненасыщенные жирные кислоты.
  3. Грибы. Эти продукты включают 2-5 % белков от общего количества. При этом есть сведения, что пищевые компоненты из грибов усваиваются с большим трудом.
  4. Гречка. В 100 г продукта присутствует 13 г белков. В гречке нет глютена, потому она вызывает аллергических реакций. При этом крупа включает фитонутриенты, которые сказываются на выработке инсулина и восстанавливают метаболизм.

Норма белка в день для организма

Норма белка в день для организма

Норма белка в день для организма взрослого человека составляет минимум 50 г в чистом виде, что соответствует 150 г белого мяса или рыбы. Люди, которые активно занимаются спортом и нацелены на развитие мышечных тканей, должны употреблять большее количество белков.

Для профилактики распада мышечной ткани женщины должны употреблять минимум 1 г белка на 1 кг веса. Однако оптимальным количеством считается 2 г. Для мужчин этот параметр увеличивается до 3 г. Это означает, что представитель сильного пола весом 90 кг должен съедать в день 270 г чистого белка.

Усваиваемость белка

Усваиваемость белка

При употреблении таких веществ, стоит помнить о чувстве меры. Избыточное количество белков представляет определенную опасность. Они с трудом перевариваются и могут вызвать нарушения пищеварительных функций.

Проблемы с усвоением белков могут возникать в следующих ситуациях:

  1. Избыточное количество белка за 1 прием пищи. За 1 прием организм не может усвоить больше 35 г белков. Помимо этого, избыток таких веществ отрицательно влияет на пищеварительные функции. Организм не способен переварить большое количество протеинов. Как следствие, неусвоенная часть начинает гнить в пищеварительных органах. Это провоцирует запоры, увеличение ацетона и нарушения в работе поджелудочной железы.
  2. Систематическое переедание. Диетологи советуют придерживаться принципов дробного питания – 4-5 раз в день. Это помогает лучше переваривать пищу, в том числе и белки.
  3. Употребление большого количества трудноперевариваемых белков. Протеины могут усваиваться в разном объеме. Есть белки, которые легко перевариваются. Однако существуют и трудноперевариваемые продукты. Эталоном белковой пищи считаются куриные яйца. Также к легким белкам относят нежирные кисломолочные продукты, куриное филе, кролика.
  4. Исключение жиров. Безусловно, жирные продукты содержат большое количество калорий и с трудом усваиваются. Однако полностью отказываться от них не следует. Это чревато гормональными нарушениями, ухудшением состояния волос и кожи. Также исключение жиров провоцирует нарушение процесса переваривания белков. Чтобы обеспечить эффективную работу печени и выведение продуктов синтеза белка, стоит включать в рацион желчегонные жиры. Они присутствуют в оливковом и кунжутном маслах.
  5. Дефицит жидкости. Нарушение питьевого режима провоцирует разные проблемы, включая ухудшение усвоения белка. В сутки человек должен пить 30-40 мл воды на 1 кг массы тела. В жаркую погоду или при серьезных физических нагрузках норма дополнительно повышается на 500-800 мл.
  6. Неправильные дополнения к белкам. Чтобы протеины усваивались максимально хорошо, их рекомендуется сочетать с овощами. В такой пище присутствуют ферменты и клетчатка. Это облегчает переваривание белков.

Вред белков

Вред белков

Нарушения белкового обмена представляют большой вред для организма. Эти вещества принимают участие почти во всех физиологических процессах. При нарушении обмена белков есть риск развития опасных нарушений.

При этом для здоровых людей белки представляют опасность лишь при избыточном потреблении в течение долгого периода времени. При соблюдении белковых диет, которые базируются на употреблении большого количества протеинов, нужно помнить о чувстве меры. Такие системы питания должны быть кратковременными и плавными.

Избыточное количество белков в рационе провоцирует поражение почек и печени. Это связано со сложным процессом выведения веществ. В этом случае вырабатываются кетоновые тела, которые провоцируют отравление организма.

При некоторых патологиях есть противопоказания к употреблению белков. К ним относят подагру, недостаточность почек и печени, хроническую форму панкреатита.

Белки представляют собой ценные вещества, которые принимают участие во всех физиологических процессах. Потому каждый человек должен употреблять достаточное количество протеинов. При этом необходимо помнить о чувстве меры и соблюдать рекомендации врачей.

белки — урок. Биология, Общие биологические закономерности (9–11 класс).

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка. Она уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

 

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

 

Разрушение первичной структуры необратимо.

 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

Структура белка - основные виды с описанием и примерами, функции

Структура белка необычайно важна для соединений, так как все функции они выполняют, принимая определённую пространственную конфигурацию.

Белки – это природные полимеры, молекулы которых состоят из остатков аминокислот, соединенных амидными (пептидными) связями.

Мономерами для образования макромолекулы служат α-аминокислоты. Это соединения, содержащие аминогруппу у первого атома углерода, не считая углерод карбоксильной группы.

Таких аминокислот известно 20. Из этого количества создаётся всё многообразие белков. Некоторые аминокислоты могут образовываться в организме, их называют заменимыми. Те, которые поступают только с пищей – незаменимые. В зависимости от состава, белки делят на полноценные, содержащие незаменимые аминокислоты, и неполноценные, не содержащие незаменимые аминокислоты.

Состав, строение и функции белков очень сложные, изучает эти вопросы биология. Рассматриваются природные полимеры и в курсе химии. Состав их можно выразить формулой:

(–HN – CHR – CO –)n

В природные полимеры входят химические элементы: углерод, кислород, водород, азот, сера. В состав некоторых соединений включены фосфор, селен железо, медь и прочие элементы.

Первичная структура белка

Последовательно соединенные друг с другом аминокислотные остатки в цепь образуют первичную структуру. Цепь образована пептидной химической связью. Этот уровень организации самый важный. Случайная замена одной аминокислоты вызывает тяжелое генетическое заболевание.

Белковые молекулы образуются в процессе биосинтеза на рибосомах. Здесь реализуется наследственная информация. Последовательность аминокислотных остатков определяется последовательностью нуклеотидов в и-РНК. Зависимость триплетов и аминокислот записана в таблице генетического кода.

Если первичный уровень организации белка задаётся правильно, остальные структуры макромолекула принимает самопроизвольно.

Вторичная структура белка

Свёрнутая в спираль одна или 2 полипептидные цепи образуют вторичную структуру. Её поддерживают водородные связи. 

Большинство белковых молекул имеют вторичный уровень.

Третичная структура белка

Упаковка вторичной структуры в клубок образует третичный уровень организации. 

Поддерживают данную структуру дисульфидные, солевые, сложноэфирные мостики, силы электростатического взаимодействия.

Четвертичная структура белка

Некоторые белковые единицы формируют сложные агрегаты в пространстве. Несколько упакованных в клубок белков, ориентированных относительно друг друга, создают четвертичную структуру. 

Удерживаются такие агрегаты водородными связями, электростатическими и прочими взаимодействиями.

Денатурация и ренатурация белка

Природные соединения проявляют разные свойства. Одно из важнейших свойств – денатурация белка. Это разрушение пространственной организации белковых молекул. Последовательность соединения аминокислот, а значит и химический состав, не изменяется. 

Пространственная конфигурация может разрушаться в результате действия разных факторов:

  • высокой температуры;

  • радиации;

  • солей тяжёлых металлов;

  • щелочей;

  • кислот;

  • механических и иных факторов.

Если первичный уровень организации белка не нарушен, может идти обратная реакция – ренатурация. Это восстановление пространственного строения молекулы. Не все природные полимеры способны к восстановлению пространственной организации. 

Иногда денатурация протекает необратимо, хотя первичная структура не разрушается. Функции белки способны выполнять, находясь в определенной пространственной конфигурации.

Протеины – простые белки

К простым белкам относят высокомолекулярные соединения, состоящие только из остатков аминокислот. В них содержатся незаменимые и заменимые аминокислоты.

Протеины применяются в спортивной среде для восполнения белковой массы в организме. Используют протеиновый порошок для приготовления коктейля, в качестве добавки к пище.

Протеиновый порошок получают в результате переработки продуктов животного происхождения: молока, мяса, яиц, рыбы. Организм будет получать протеины, если просто употреблять в пищу указанные продукты. Усвоение их будет идти медленнее.

Протеиды – сложные белки

Сложными называют белки, содержащие небелковые по природе вещества. Так называемые простетические группы. 

В соответствии с химическим составом и наличием групп их классифицируют:

  • на нуклеопротеиды;

  • хромопротеиды;

  • липопротеиды;

  • гликопротеиды и другие.

В состав протеидов входят элементы: магний, железо, медь и другие. Примером протеидов являются гемоглобин и миоглобин. Они выполняют важнейшие функции, принимают участие в обменных процессах.

Функции белков


Белки выполняют в клетках организмов важные функции:

  • каталитические;

  • регуляторные;

  • структурные;

  • двигательные;

  • транспортные;

  • защитные;

  • запасные и другие.

Пространственная конфигурация белка оказывает существенное влияние на возможность выполнения функций.


§ 10. Классификация белков

§ 10. КЛАССИФИКАЦИЯ  БЕЛКОВ

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

 

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

 

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

 

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

 

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин,  принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe2+ (рис. 19). При  взаимодействии гемоглобина с кислородом образуется оксигемоглобин.  В альвеолах легких  гемоглобин  насыщается кислородом.  В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением  кислорода,  который  используется клетками:

Гемоглобин может  образовывать  соединение  с оксидом углерода (II), которое называется карбоксигемоглобином:

.

Карбоксигемоглобин не способен  присоединять  кислород. Вот почему происходит отравление угарным газом. 

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Рис. 19. Гем

 

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20). 

 

Рис. 20. Фосфопротеин 

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки  фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

 

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21). 

 

Рис. 21. Липопротеины в клеточной мембране 

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие  с ними ковалентную связь.

 

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

 

 

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

 

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

 

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции ( рис. 23).

 

 Рис. 23. Клеточная мембрана.

 

Питательные и запасные белки

Питательным белком является казеин, основная функция которого  заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

 

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

 

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки,  способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые  другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

 

Рис. 24. Транспорт глюкозы через клеточную мембрану

 

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

 

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген  фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

 

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных  рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом  которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

 

 Рис.25. Передача внешних сигналов в клетку

 

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

 

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Виды белков — Студопедия

Денатурация белка

Структура молекулы белка

R

Между соседними аминокислотами возникает пептидная связь, на основе которой образуется соединение – полипептид.

1. Первичная или линейная. Представляет собой полипептидную цепочку – длинную цепь последовательно присоединенных друг к другу аминокислот, связь пептидная.

2. Вторичная структура. Полипептидная цепь туго скрученная в спираль, витки которой прочно соединены между собой водородными связями (может быть спиральная или в виде гармошки).

3. Третичная. Свернутая в спираль молекула белка скручивается за счет гидрофобных взаимодействий в еще более плотную конфигурацию. В результате такого многократного скручивания длинная и тонкая нить молекулы белка становится короче, толще и собирается в компактный комок – глобулу.

4. Четвертичная. Объединение нескольких глобул с третичной структурой в сложный комплекс.

ЗАДАНИЕ. Используя текст учебника параграф 1.4 и рис. 5, 6, 7, изобразите схематично все структуры белковой молекулы в тетради.

Если нарушить структуру белка нагреванием или химическим воздействием, он теряет свои качества и раскручивается. Этот процесс называется денатурацией. Если денатурация затронет третичную или вторичную структуру, то она обратима: белок может снова закрутиться в спираль и уложиться в третичную структуру (ренатурация). При этом восстанавливаются и функции данного белка.


БЕЛКИ

Глобулярные фибриллярные
Антитела, гормоны, ферменты Коллаген, кератин кожи, эластин

КЛАССИФИКАЦИЯ БЕЛКОВ ПО ВЫПОЛНЯЕМЫМ ФУНКЦИЯМ

Типы белков Функции белков Примеры
1. Структурные Структурная. Входит в состав клеточных мембран и органоидов клетки Коллаген – фибриллярный белок соединительной ткани; Кератин – белок костей. ногтей, волос Оссеин – белок костей Актин и тубулин – белки, участвующие в формировании цитоскелета
2. Ферменты Каталитическая. Обеспечивают фиксацию углерода при фотосинтезе, реакции матричного синтеза, расщепление питательных веществ в пищеварительном тракте и т.д.  
3. Гормоны Регуляторная Инсулин – регулирует поступление глюкозы в клетки Гормон роста
4. Сократительная Сократительная. Благодаря движению относительно друг друга нитей белков актина и миозина осуществляется сокращение мышц; движение ресничек и жгутиков простейших происходит за счет скольжения микротрубочек, имеющих белковую природу, относительно друг друга  
5. Транспортные Транспортная. Перенос веществ как внутри клетки, так и в организме в целом. Альбумины крови транспортируют жирные кислоты. Глобулины – ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ Белки плазматической мембраны осуществляют транспорт веществ в клетку
6. Защитные Защитная Антитела крови обеспечивает иммунную защиту организма. Фибриноген и тромбин предотвращает кровотечение и участвуют в свертывании крови Интерферон подавляет развитие вирусов
7. Запасные Запасная или питательная Белок молока козеин, альбумин яиц птиц и рептилий, клейковина семян пшеницы, зеин семян кукурузы
8. Токсины Защитная Токсины бактерий, растений и животных
9. Различные типы белков Энергетическая. При распаде 1 г белков выделяется 17,6 кДж энергии  

НУКЛЕИНОВЫЕ КИСЛОТЫ


Нуклеиновые кислоты были впервые открыты в ядрах лейкоцитов в 1869 И.Ф. Мишером, в связи с чем и получили свое название. Есть 2 вида нуклеиновых кислот: ДНК и РНК. Молекулы нуклеиновых кислот представляют собой длинные полимерные цепочки, мономерами которых являются нуклеотиды.

Каждый нуклеотид состоит из азотистого основания, моносахарида (рибозы или дезоксирибозы) и остатка фосфорной кислоты.

СХЕМА СТРОЕНИЯ НУКЛЕОТИДА

Азотистое основание Аденин – А Тимин – Т Цитозин – Ц Гуанин – Г Урацил - У Углевод: Рибоза или дезоксирибоза Остаток фосфорной кислоты

Запомните: последовательность нуклеотидов в молекуле ДНК всегда строго индивидуальна и неповторима для каждого биологического вида. Последовательность расположения нуклеотидов в молекуле ДНК определяет наследственную информацию клетки. структуру молекулы ДНК раскрыли в 1953 году Дж. Уотсон и Ф. Крик.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ДНК И РНК

Признаки ДНК РНК
Местонахождение в клетке У эукариот – ядро, митохондрии, хлоропласты, у прокариот - цитоплазма Ядро, митохондрии, хлоропласты, цитоплазма, рибосомы
Строение Нуклеотиды, входящие в состав ДНК, содержат дезоксирибозу, одно из 4 азотистых оснований: аленин, гуанин, цитозин и тимин и остаток фосфорной кислоты Нуклеотиды входящие в состав РНК, содержит моносахарид рибозу, одно из 4 азотистых оснований: аденин, гуанин, цитозин и урацил и остаток фосфорной кислоты
Структура Состоит из 2 полинуклеотидных цепочек, скрученных в виде двойной спирали в направлении слева направо. Нуклеотиды (мономеры) одной из цепочек соединяются парами с нуклеотидами другой цепочки посредством соединения их азотистых оснований по принципу комплементарности: А-Т; Г -Ц Состоит из одинарной полинуклеотидной цепочки
Функции Носитель наследственной информации: участки ДНК, кодирующие определенный белок, являются генами Обеспечивают синтез в клетке специфических для нее белков. Типы РНК: и –РНК – переносит информацию о первичной структуре белка; т – РНК – переносит аминокислоты к месту синтеза белка; р- РНК – вместе с белками образуют мельчайшие органоиды клетки – рибосомы, в которых происходит синтез белка

примеров белка в биологии и диете

Белок является основным компонентом живых клеток и состоит из углерода, водорода, кислорода, азота и одной или нескольких цепочек аминокислот. Три типа белков - волокнистые, глобулярные и мембранные.

Волокнистые белки

Волокнистые белки образуют мышечные волокна, сухожилия, соединительную ткань и кости.

Примеры волокнистых белков:

  • Актин
  • Arp2 / 3
  • Коллаген
  • Коронин
  • Дистрфин
  • Эластин
  • F-спондин
  • Фибронектин
  • Кератин
  • Миозикин
  • Миозикин
  • Миозикин
  • Spectrin
  • Tau
  • Titin
  • Tropomyosin
  • Tubulin

Globular Proteins

Глобулярные белки более растворимы в воде, чем другие классы белков, и у них есть несколько функций, включая транспортировку, катализирование и регулирование.

Вот примеры глобулярных белков:

  • Альбумины
  • Альфа-глобулин
  • Бета-глобулин
  • С1-ингибитор
  • С3-конвертаза
  • Кадгерин
  • Карбоксипептидаза
  • С-реактивный белок
  • Эпендимин
  • Эпендимин
  • Фактор XIII
  • Фибрин
  • Гамма-глобулин
  • Гемоглобин
  • IgA
  • IgD
  • IgE
  • IgG
  • IgM
  • Интегрин
  • Миоглобин
  • NCAM
  • Белок С
  • Белок C
  • Ингибитор Z-связанной протеазы
  • Селектин
  • Сывороточный альбумин
  • Сывороточный компонент амилоида Р
  • Тромбин
  • Фактор фон Виллебранда

Мембранные белки

Мембранные белки играют несколько ролей, включая передачу сигналов внутри клеток, позволяя клеткам взаимодействовать, и транспо rting молекулы.

Примеры мембранных белков включают:

  • CFTR
  • C-myc
  • Рецептор эстрогена
  • FOXP2
  • FOXP3
  • Переносчик глюкозы
  • Гликофорин D
  • Гистоны
  • Гидролазы
  • Мускариновые рецепторы ацетилсалициловой кислоты
  • Мускариновые рецепторы
  • Никотиновый ацетилхолиновый рецептор
  • Оксидоредуктазы
  • P53
  • Калиевый канал
  • Родопсин
  • Скрамблаз
  • Трансферазы

High Protein Foods

Вот примеры продуктов с высоким содержанием белка с количеством граммов продукта на 100 граммов :

  • Бобы сои - 35.9 г
  • Сыр - 30,9 г
  • Оленина - 30,21
  • Семена тыквы - 28,8 г
  • Омар - 26,41
  • Консервы из тунца - 26,3 г
  • Тунец - 25,6 г
  • Морской черт - 24 г
  • Арахисовая паста с хрустящей корочкой - 24,9 г
  • Тилапия - 24 г
  • Куриная грудка без кожи - 23,5 г
  • Семечки подсолнечника - 23,4 г
  • Грубый апельсин - 22,64 г
  • Грудка индейки без кожи - 22,3 г
  • Филе лосося без кожи - 21,6 г
  • Сардины - 21 .5 г
  • Миндаль - 21,1 г
  • Филе говядины - 20,9
  • Стейк из баранины - 19,9 г
  • Свиные отбивные - 19,3 г
  • Мясо краба - 18,1 г
  • Треска - 17,9 г
  • Креветки - 17,0 г
  • Пикша - 16,4 г
  • Бекон - 15,9 г
  • Кускус - 15,1 г
  • Анчоусы - 14,5 г
  • Сосиски из свинины - 13,9 г
  • Яйца - 12,5 г
  • Паста - 12,5 г
  • Ягоды годжи - 12,3 г
  • Творог - 12,2 г
  • Тофу - 12.1 г
  • Пицца Пепперони - 11,4 г
  • Цельнозерновой хлеб - 11,0 г
  • Овсяная каша - 11,0 г
  • Печеные бобы - 9,5 г
  • Хумус - 7,4 г
  • Коричневый рис - 6,9 г
  • Горох - 5,9 г
  • Спагетти - 5,1 г
  • Йогурт - 4,5 г
  • Брокколи - 4,2 г
  • Кокос - 3,33 г
  • Цельное молоко - 3,3 г
  • Спаржа - 2,9 г
  • Шпинат - 2,8 г
  • Картофель - 2,1 г
  • Авокадо - 1,9 г
  • Бананы - 1.2 г
  • Апельсин - 1,1 г

Продукты с высоким содержанием белка, сортированные по типу

Фасоль
  • Тофу (½ стакана) - 20 г
  • Соевое молоко (1 стакан) - 6-10 г
  • Соевые бобы (приготовленные ½ стакана) - 14 г
  • Горох колотый (½ стакана приготовленного) - 8 г
  • Другие бобы, такие как черная, пинто, чечевица (1/2 стакана) - от 7 до 10 г
Яйца и молочные продукты
  • Яйцо (1 большое) - 6 г
  • Творог (½ стакана) - 15 г
  • Молоко (1 стакан) - 8 г
  • Йогурт (1 стакан) - от 8 до 12 г
  • Мягкие сыры, такие как бри, камамбер, моцарелла (1 унция) - 6 г
  • Средние сыры, такие как чеддер и швейцарский (1 унция) - от 7 до 8 г
  • Твердые сыры, такие как пармезан (1 унция) - 10 г
Орехи и семена
  • Миндаль (чашки) - 8 г
  • Кешью (чашки) - 5 г
  • Лен семена (стакана) - 8 г
  • Арахисовое масло (2 столовые ложки) - 8 г
  • Арахис (¼ стакана) - 9 г
  • Пекан (стакана) - 2.5 г
  • Семена тыквы (чашки) - 8 г
  • Семечки (чашки) - 6 г
Говядина
  • Котлета для гамбургеров (4 унции) - 28 г
  • Стейк (6 унций) - 42 г
  • Другие нарезки говядина (1 унция) - около 7 г
Курица
  • Куриная грудка (3,5 унции) - 30 г
  • Куриное бедро -10 г
  • Голень - 11 г
  • Крылышко - 6 г
  • Куриное мясо (4 унции приготовленное) - 35 г
Рыба
  • Большинство разделов рыбы (3.5 унций) - около 22 г
  • Тунец (6 унций) - 4 г
Свинина
  • Свиная отбивная (средний размер) - 22 г
  • Свиная вырезка или вырезка (4 унции) - 9 г
  • Ветчина (3 унции) - 19 г
  • свиной фарш (3 унции вареной) - 22 г
  • Бекон, 1 ломтик - 3 г
  • Бекон по-канадски (ломтик) - от 5 до 6 г

Итак, теперь вы видели множество различных примеров белков в разных продуктах и ​​веществах.

.

Четыре типа структуры белка

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar
            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000
              • 000 Калькуляторы
              • 000 Физические модели 900 Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1
              • Образцы документов CBSE для класса 12
            • Вопросники предыдущего года CBSE
              • Вопросники предыдущего года CBSE, класс 10
              • Вопросники предыдущего года CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Класс 11 Физика
              • HC Verma Solutions Класс 12 Физика
            • Решения Лакмира Сингха
              • Решения Лахмира Сингха класса 9
              • Решения Лахмира Сингха класса 10
              • Решения Лакмира Сингха класса 8
            • 9000 Класс
            9000BSE 9000 Примечания3 2 6 Примечания CBSE
          • Примечания CBSE класса 7
          • Примечания
          • Примечания CBSE класса 8
          • Примечания CBSE класса 9
          • Примечания CBSE класса 10
          • Примечания CBSE класса 11
          • Примечания 12 CBSE
        • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
        • CBSE Примечания к редакции класса 10
        • CBSE Примечания к редакции класса 11
        • Примечания к редакции класса 12 CBSE
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы по математике класса 8 CBSE
        • Дополнительные вопросы по науке 8 класса CBSE
        • Дополнительные вопросы по математике класса 9 CBSE
        • Дополнительные вопросы по математике класса 9 CBSE Вопросы
        • CBSE Class 10 Дополнительные вопросы по математике
        • CBSE Class 10 Science Extra questions
      • CBSE Class
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8 Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Учебные решения
    • Решения NCERT
      • Решения NCERT для класса 11
        • Решения NCERT для класса 11 по физике
        • Решения NCERT для класса 11 Химия
        • Решения NCERT для биологии класса 11
        • Решение NCERT s Для класса 11 по математике
        • NCERT Solutions Class 11 Accountancy
        • NCERT Solutions Class 11 Business Studies
        • NCERT Solutions Class 11 Economics
        • NCERT Solutions Class 11 Statistics
        • NCERT Solutions Class 11 Commerce
      • NCERT Solutions for Class 12
        • Решения NCERT для физики класса 12
        • Решения NCERT для химии класса 12
        • Решения NCERT для биологии класса 12
        • Решения NCERT для математики класса 12
        • Решения NCERT, класс 12, бухгалтерский учет
        • Решения NCERT, класс 12, бизнес-исследования
        • NCERT Solutions Class 12 Economics
        • NCERT Solutions Class 12 Accountancy Part 1
        • NCERT Solutions Class 12 Accountancy Part 2
        • NCERT Solutions Class 12 Micro-Economics
        • NCERT Solutions Class 12 Commerce
        • NCERT Solutions Class 12 Macro-Economics
      • NCERT Solut Ионы Для класса 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для математики класса 6
        • Решения NCERT для науки класса 6
        • Решения NCERT для класса 6 по социальным наукам
        • Решения NCERT для класса 6 Английский язык
      • Решения NCERT для класса 7
        • Решения NCERT для математики класса 7
        • Решения NCERT для науки класса 7
        • Решения NCERT для социальных наук класса 7
        • Решения NCERT для класса 7 Английский язык
      • Решения NCERT для класса 8
        • Решения NCERT для математики класса 8
        • Решения NCERT для науки 8 класса
        • Решения NCERT для социальных наук 8 класса ce
        • Решения NCERT для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 по социальным наукам
      • Решения NCERT для математики класса 9
        • Решения NCERT для математики класса 9 Глава 1
        • Решения
        • NCERT для математики класса 9, глава 2
        • Решения NCERT
        • для математики класса 9, глава 3
        • Решения NCERT
        • для математики класса 9, глава 4
.

Примеры белков

Белки

Белок - это макромолекула полимера, то есть она построена из длинных цепочек аминокислот. Эти цепи, которые также включают водород, кислород, углерод и азот, обычно содержат от 200 до 300 аминокислот, хотя пептиды намного меньше, а тайтины намного больше. На самом деле титины настолько велики, что могут содержать более 33000 аминокислот.

Важно не путать белок, который мы едим, с белками, поддерживающими клеточную функцию.Функции каждой живой клетки зависят от белка, и хотя съесть сочный стейк - это вкусно, это не то же самое, что поддерживать клеточную жизнь. Есть три типа белков: волокнистые, глобулярные и мембранные. Каждый тип выполняет разные функции и имеет разный состав, но все они построены на тех же компонентах, которые образуют все белки.

Примеров белков:

1. Волокнистые белки

Волокнистые белки - это то, на что они похожи.Они состоят из длинных нитей отдельных волокон, связанных вместе, чтобы сформировать более прочную «стенку» белка. Эти пучки образуют у животных мышцы, сухожилия, кости и другие соединительные ткани. Эти специфические белки включают актин, коллаген, эластин, кератин, миозин, тубулин и многие другие.

2. Глобулярные белки

Глобулярные белки легко запомнить, потому что это слово звучит как «шарик», а капля воды - все, что нужно для расщепления этих белков. Они намного легче растворимы в воде, чем другие типы белков, что полезно, потому что их работа заключается в транспортировке и регулировании веществ.Некоторые из глобулярных белков - это альбумины, альфа-глобулин, карбоксипептидаза, эпендимин, фибрин, гемоглобин, интегрин, миоглобин, селектин, тромбин и фактор фон Виллебранда.

3. Мембранные белки

Эти белки получили свое название из-за своей специфической работы, в которой они взаимодействуют с клеточными мембранами внутри организма, когда они служат переносчиками молекул, мостом, который позволяет взаимодействовать между двумя клетками, или когда они передают сигналы внутри клетки. Мембранные белки интересны тем, что более половины фармацевтических препаратов, представленных сегодня на рынке, воздействуют тем или иным образом на мембранные белки, а также потому, что ученые считают, что от 20% до 30% всех генов в геноме работают на кодирование мембранных белков.Это делает их очень важными для клеточной функции и, следовательно, для самой жизни. Некоторые из этих мембранных белков включают рецепторы гормонов, гидролазы, трансферазы и многие другие.

Тест по белкам
Тест по белкам
Функция рибосом
Функция ядра
Функция эндоплазматического ретикулума
Функция цитоскелета
Тест по метаболизму
Функция аппарата Гольджи
Фредерик Сэнджер Факты

Примеры белков

.

функций белков | 5 основных функций, что, где и как

Белки - это самые распространенные органические молекулы на Земле. Они в изобилии присутствуют в каждой живой клетке. Белки - это полимеры, состоящие из тысяч аминокислот, связанных пептидными связями. Длинные цепи аминокислот, известные как полипептиды, складываются вокруг себя несколькими способами, образуя сложные структуры, называемые белками.

Функции, выполняемые белками, можно разделить на разные категории.Некоторые функции необходимы на клеточном уровне, в то время как другие необходимы для лучшей работы организма в целом. Здесь мы попытаемся понять различные функции, выполняемые белками в нашем организме, на различных примерах.

Все ферменты белки

Ферменты - это белки, которые необходимы для любой химической реакции в нашем организме. Они катализируют биохимическую реакцию, чтобы жизнь могла продолжаться.

Пример ферментативной реакции в нашем организме - гликолиз.Это процесс высвобождения энергии из молекулы глюкозы. Эта энергия требуется для выполнения нескольких процессов, происходящих внутри клетки. Процесс гликолиза включает около 10 этапов, каждый из которых требует определенного фермента. Отсутствие единственного фермента останавливает процесс, и энергия из глюкозы не может быть получена.

Синтез белков также требует определенных ферментов. Синтез белка включает транскрипцию ДНК в мРНК, а затем трансляцию мРНК рибосомами.Оба эти шага требуют ферментов, которые являются белками. Например;

  • РНК-полимераза - это фермент, необходимый для соединения нуклеотидов РНК в процессе транскрипции.
  • Аминоацил тРНК синтетаза - это фермент, который присоединяет определенные аминокислоты к тРНК, чтобы ее можно было использовать в синтезе белка.

Таким образом, от получения энергии до производства белков, все химические процессы в живых организмах нуждаются в ферментах, и все ферменты являются белками. Роль белков как ферментов - самая важная и важная функция, выполняемая белками.

Белки действуют как рецепторы на клеточных мембранах

Белки являются важными компонентами всех клеточных мембран и мембран органелл. Одна из функций этих мембранных белков состоит в том, что они действуют как рецепторы. Гормоны, нейротрансмиттеры и другие сигнальные молекулы связываются с этими рецепторами и передают сигналы клеткам. Таким образом, белки играют роль в передаче сигналов клетками, которая необходима для скоординированной функции всех клеток, присутствующих в нашем организме.Рассмотрим следующий пример, чтобы понять роль белков как рецепторов.

  • Инсулин - это гормон, контролирующий уровень глюкозы в крови. Он выполняет свою функцию, связываясь со своим рецептором, который является белком. Инсулин связывается со своим рецептором, который посылает сигналы для открытия каналов глюкозы, так что глюкоза может поступать из крови в печень и мышечные клетки. Если рецепторы инсулина отсутствуют, уровень глюкозы в крови нельзя регулировать.

Этот и ряд других примеров в нашем организме доказывают, почему белки необходимы для передачи клеточных сигналов и координации клеточных функций.

Некоторые гормоны также являются белками

Белки действуют не только как клеточные рецепторы, но и как гормоны. Инсулин и глюкагон - два гормона, которые по своей природе являются белками. Оба эти гормона необходимы для регулирования уровня глюкозы в крови. Они контролируют поглощение и высвобождение глюкозы клетками, гликолиз и глюконеогенез, а также синтез и деградацию гликогена. Роли этих гормонов в нашем организме перечислены ниже;

  • Инсулин высвобождается поджелудочной железой при высоком уровне глюкозы в крови.Он способствует усвоению клетками глюкозы, ее расщеплению, а также хранению в виде гликогена. Он также подавляет синтез новых молекул глюкозы из неуглеводных источников (глюконеогенез).
  • Глюкагон высвобождается поджелудочной железой при низком уровне глюкозы в крови. Он способствует расщеплению гликогена с высвобождением глюкозы. Он также способствует глюконеогенезу.

Белки действуют как транспортные каналы в клеточных мембранах

Белки, присутствующие в клеточных мембранах, также действуют как транспортные каналы.Вещества, не проницаемые через мембраны из-за их размера или заряда, могут проникать в клетку через эти белковые каналы. Один белковый канал специфичен для одного или нескольких веществ. Примеры белковых каналов приведены ниже;

  • Аквапорины - это белковые каналы, которые позволяют молекулам воды проходить через клетки
  • GLUT (переносчик глюкозы) являются переносчиками молекул глюкозы
  • Натриевые каналы позволяют проходить ионам натрия внутри клетки
  • Калиевые каналы пропускают только ионы калия пройти через них
  • Кальциевые каналы специфичны только для ионов кальция

Это несколько примеров белковых каналов, присутствующих в мембранах.

Белки поддерживают форму и структуру клетки

Это еще одна важная клеточная функция, выполняемая белками. Цитоскелет состоит из нескольких связанных между собой белковых нитей. Белки в цитоскелете организованы в виде микротрубочек, микрофиламентов и промежуточных филаментов. Все эти компоненты цитоскелета расположены особым образом, сохраняя форму клетки. Важные белки, из которых состоит цитоскелет, включают актин и тубулин.В отсутствие этих белков клетка не могла бы поддерживать свою структуру.

Белки участвуют в делении клеток

Деление клетки - это процесс, при котором зрелая взрослая родительская клетка делится на дочерние клетки. Белки также необходимы для этого процесса.

Во время деления клетки хромосомы разделяются на две половины путем растяжения. Это разделение хромосом осуществляется белками, известными как волокна веретена.

Белки также необходимы для деления цитоплазмы, которое происходит после разделения хромосом.

Белки необходимы для транспорта внутри клетки

Для внутриклеточного транспорта различных веществ необходимы специфические транспортные белки. Различные белки, которые участвуют во внутриклеточных белках, известны как моторные белки. Эти белки используют энергию в форме АТФ и перемещаются по микротрубочкам для транспортировки различных веществ в цитоплазме клетки. Примером моторных белков является белок кинезин. Он участвует в транспорте различных веществ в аксонах нейронов.

Белки необходимы для транспорта кислорода

Эта функция белков важна для выживания организма в целом. В этом процессе участвуют два белка, гемоглобин и миоглобин.

Гемоглобин

Это белок, присутствующий в красных кровяных тельцах. Гемоглобин состоит из четырех полипептидных цепей, двух альфа-цепей и двух бета-цепей, которые намотаны друг на друга. Каждая из этих полипептидных цепей несет одну гемовую группу (содержащую атом железа).

Этот белок отвечает за транспорт кислорода из легких в тканевую жидкость. Одна молекула кислорода может связываться с четырьмя молекулами кислорода. Он связывается с молекулами кислорода, присутствующими в воздухе, проходя через легкие. Эти молекулы кислорода высвобождаются, когда кровь проходит через ткани.

Любой недостаток или отклонение от нормы гемоглобина нарушает перенос кислорода кровью. Наши клетки не могут выжить без кислорода. Любое нарушение подачи кислорода приведет к гибели клеток в пораженных тканях.

Миоглобин

Миоглобин - еще один белок, участвующий в транспортировке кислорода. Он состоит из одной полипептидной цепи с гемовой группой. Это цитоплазматический белок, имеющий более высокое сродство к молекулам кислорода, что означает, что он может связываться с кислородом даже при высокой концентрации кислорода. Его функция - транспортировать кислород из тканевой жидкости к клеткам.

Из-за своего высокого сродства к кислороду миоглобин выделяет кислород в очень низких концентрациях.Эта особенность миоглобина отвечает за хранение кислорода в тканях.

Белки необходимы для транспорта различных веществ в крови

Хотя кровь действует как транспортная среда, белки необходимы для удержания и транспортировки некоторых веществ, которые не могут растворяться в крови. Эта функция белков также важна для правильного функционирования организма. Некоторые примеры транспортных белков, присутствующих в крови, следующие.

  • Альбумин является основным транспортным белком крови.Он действует как переносчик жирных кислот, стероидов, гормонов щитовидной железы, липофильных препаратов, тяжелых металлов, ионов кальция и билирубина
  • Преальбумин - еще один транспортный белок в крови, который переносит стероидные гормоны, тироксин и витамин A
  • Гаптоглобин является транспортным средством. белок, несущий свободный гемоглобин, присутствующий в плазме
  • Связывающий тироксин белок специфичен для гормона щитовидной железы
  • ЛПВП - это липопротеин, который транспортирует холестерин из тканей в печень
  • ЛПНП - еще один липопротеин, который транспортирует холестерин из печени в ткани

Белки участвуют в сокращении мышц

Сокращение мышц - это процесс, который позволяет нам выполнять повседневные жизненные задачи, такие как ходьба, бег, сидение, стояние, письмо и даже речь.Этот процесс сокращения мышц также происходит из-за белков. Сократительные белки присутствуют в мышечных волокнах. Эти белки взаимодействуют определенным образом, что позволяет сокращать и расслаблять мышцы. Наиболее важные сократительные присутствия:

Белки предотвращают отеки

Отек - это состояние, при котором избыточная жидкость вытекает из кровеносных сосудов и скапливается в тканях. Потеря жидкости из крови приводит к снижению артериального давления. Это потенциально смертельное состояние, которое может поставить под угрозу эффективную доставку крови к тканям организма.

Присутствующие в крови белки, известные как белки плазмы, предотвращают утечку жидкости через капилляры благодаря своему осмотическому эффекту. Онкотическое давление из-за белков плазмы удерживает воду внутри кровеносных сосудов, предотвращая ее попадание в тканевые жидкости, тем самым предотвращая отек. Если эти белки отсутствуют, отек развивается в разных частях тела.

Белки защищают наш организм от болезней

Эту функцию выполняют антитела. Антитела или иммуноглобулины - это белки плазмы, которые вырабатываются в ответ на попадание различных болезнетворных агентов в наш организм.Они борются с этими патогенами и защищают наш организм от их вредного воздействия. Если в нашем организме уже присутствуют антитела против патогена, они уничтожают патоген до того, как он вызовет какое-либо заболевание. Этот процесс известен как иммунитет.

Белки необходимы для пищеварения

Процесс пищеварения включает расщепление сложных веществ, присутствующих в нашем рационе, на более простые, чтобы они могли всасываться в кровь. Расщепление различных диетических веществ на более простые молекулы происходит в нашей пищеварительной системе ферментами, которые по своей природе являются белками.

Белки также действуют как запасные вещества

Белки - это полимеры аминокислот. Они действуют как запасные вещества, в которых хранятся тысячи аминокислот. Эти аминокислоты высвобождаются из белков, когда они необходимы организму. Примеры запасных белков:

  • Казеин в молоке
  • Альбумин в яйце

Эти белки обеспечивают незаменимые аминокислоты, необходимые организму для выработки нескольких белков. Более того, во время голодания белки, присутствующие в организме, также могут использоваться в качестве источника энергии для обеспечения калорий, необходимых для выполнения различных функций организма.

Белки контролируют экспрессию генов

Экспрессия гена - это процесс, с помощью которого информация в конкретном гене копируется в форме мРНК, а позже эта мРНК используется рибосомами для кодирования белка этим геном.

Этот процесс экспрессии генов контролируется факторами транскрипции. Эти факторы транскрипции позволяют транскрипцию генов только тех белков, которые в настоящее время необходимы организму.

Факторы транскрипции также являются белками по своей природе.Таким образом, белки регулируют свой собственный синтез, регулируя экспрессию генов.

Сводка

Белки - это полимеры, состоящие из аминокислот. Они участвуют практически во всех процессах, происходящих в нашем организме. Сводка функций, выполняемых белками, выглядит следующим образом;

  • Как ферменты, белки необходимы для всех химических процессов в живых организмах
  • Как гормоны и клеточные рецепторы, они необходимы для клеточной передачи сигналов и координации
  • Как транспортные каналы, белки необходимы для проникновения ионов и более размер частиц в клетки
  • Являясь компонентами цитоскелета, они поддерживают форму клеток
  • Волокна веретена - это белковые волокна, которые необходимы для деления клеток
  • Гемоглобин и миоглобин являются белками, необходимыми для транспорта кислорода
  • Альбумин и другие белки плазмы необходимы для транспортировки липидов, лекарств и других веществ в крови
  • Сократительные белки необходимы для сокращения мышц
  • Антитела - это белки, которые защищают наш организм от вредоносных болезней
  • Белки плазмы поддерживают баланс жидкости в нашем организме
  • Они регулируют экспрессию генов
  • Белки также обеспечивают энергией тело во времена голода

Список литературы

  1. Лодиш Х, Берк А., Мацудаира П., Кайзер Калифорния, Кригер М., Скотт М.П., ​​Зипуркси С.Л., Дарнелл Дж. (2004).Молекулярная клеточная биология (5-е изд.). Нью-Йорк, Нью-Йорк: WH Freeman and Company
  2. Zhang C, Kim SH (февраль 2003 г.). «Обзор структурной геномики: от структуры к функции» . Текущее мнение в химической биологии. 7 (1): 28–32. DOI : 10.1016 / S1367-5931 (02) 00015-7 . PMID 12547423
  3. Sleator RD (2012).«Прогнозирование функций белков». Функциональная геномика. Методы молекулярной биологии. 815 . С. 15–24. doi : 10.1007 / 978-1-61779-424-7_2 . ISBN 978-1-61779-423-0 . PMID 22130980
.

9 Важные функции белков в организме

Белки могут снабжать ваш организм энергией.

Белок содержит четыре калории на грамм, то есть столько же энергии, что и углеводы. Наибольшее количество энергии обеспечивают жиры - девять калорий на грамм.

Однако последнее, что ваше тело хочет использовать для получения энергии, - это белок, поскольку это ценное питательное вещество широко используется в вашем теле.

Углеводы и жиры гораздо лучше подходят для получения энергии, так как ваше тело сохраняет резервы для использования в качестве топлива.Более того, они метаболизируются более эффективно по сравнению с белком (36).

На самом деле, в нормальных условиях белок снабжает ваш организм очень небольшой энергией.

Однако в состоянии голодания (18–48 часов без приема пищи) ваше тело разрушает скелетные мышцы, чтобы аминокислоты могли снабжать вас энергией (37, 38).

Ваше тело также использует аминокислоты из разрушенных скелетных мышц, если запасы углеводов недостаточны. Это может произойти после изнурительных упражнений или если вы в целом не потребляете достаточно калорий (39).

Резюме

Белок может служить ценным источником энергии, но только в ситуациях голодания, изнурительных упражнений или недостаточного потребления калорий.

.

Белок: источники, дефицит и потребности

Белок - важная часть любой диеты. Количество белка, необходимое человеку, зависит от его возраста и пола.

Белок является частью каждой клетки организма. Он помогает организму создавать и восстанавливать клетки и ткани. Белок является основным компонентом кожи, мышц, костей, органов, волос и ногтей.

По данным Управления по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA), большинство людей в Соединенных Штатах получают достаточно белка из своего рациона для удовлетворения своих потребностей.

В этой статье рассматривается белок, его функции, источники и количество белка, необходимое разным группам людей каждый день.

Белок - один из трех макроэлементов, которые необходимы организму в больших количествах. Другие макроэлементы - это жиры и углеводы.

Белок состоит из длинных цепочек аминокислот. Всего 20 аминокислот. Определенный порядок аминокислот определяет структуру и функцию каждого белка.

20 аминокислот, которые организм использует для создания белка:

  • аланин
  • аргинин
  • аспарагин
  • аспарагиновая кислота
  • цистеин
  • глутаминовая кислота
  • глутамин
  • глицин
  • гистидин
  • - это лейцин
  • лизин
  • метионин
  • фенилаланин
  • пролин
  • серин
  • треонин
  • триптофан
  • тирозин
  • валин

Есть девять незаменимых аминокислот, которые человеческий организм не синтезирует, поэтому они должны происходить из диета.

Белки могут быть полными или неполными. Полноценные белки - это белки, содержащие все незаменимые аминокислоты. Продукты животного происхождения, соя и киноа являются полноценными белками.

Неполные белки - это белки, которые не содержат всех незаменимых аминокислот. Большинство растительных продуктов содержат неполные белки, включая бобы, орехи и зерна.

Люди могут комбинировать неполные источники белка, чтобы приготовить еду, содержащую все незаменимые аминокислоты. Примеры включают рис и бобы или арахисовое масло на цельнозерновом хлебе.

Что делает белок в организме?

Белок присутствует в каждой клетке организма, и адекватное потребление белка важно для поддержания здоровья мышц, костей и тканей.

Белок играет роль во многих телесных процессах, включая:

  • свертывание крови
  • баланс жидкости
  • ответы иммунной системы
  • зрение
  • гормоны
  • ферменты

Белок важен для роста и развития, особенно в период
года. детство, юность и беременность.

Согласно Руководству по питанию для американцев на 2015–2020 годы, здоровый режим питания включает в себя разнообразные продукты, содержащие белок. Как животные, так и растительные продукты могут быть отличными источниками белка.

Руководящие принципы классифицируют следующие продукты как белковые:

  • морепродукты
  • постное мясо и птица
  • яйца
  • бобовые, в том числе бобы и горох
  • орехи
  • семена
  • соевые продукты

молочные продукты, такие как молоко, сыр и йогурт, также содержат белок.Цельнозерновые и овощи содержат некоторое количество белка, но обычно меньше, чем другие источники.

Продукты животного происхождения, как правило, содержат больше белка, чем продукты растительного происхождения, поэтому людям, придерживающимся вегетарианской или веганской диеты, может потребоваться спланировать свое питание, чтобы обеспечить удовлетворение своих потребностей в белке.

Прочтите здесь о растительных источниках белка.

FDA сообщает, что люди могут определить, содержит ли пищевой продукт большое или низкое содержание белка, по этикетке.

Продукты, обеспечивающие 5% или менее дневной нормы человека, считаются продуктами с низким содержанием белка.

Продукты с содержанием белка 20% или более считаются продуктами с высоким содержанием белка.

Человеку не нужно употреблять продукты, содержащие все незаменимые аминокислоты, при каждом приеме пищи, потому что его организм может использовать аминокислоты из недавних приемов пищи для образования полноценного белка. Употребление разнообразных белковых продуктов в течение дня - лучший способ удовлетворить ежедневные потребности в белке.

Прочтите здесь о некоторых полезных для здоровья продуктах с высоким содержанием белка.

FDA рекомендует взрослым потреблять 50 граммов (г) белка в день в рамках диеты, содержащей 2000 калорий.Суточная норма человека может быть выше или ниже в зависимости от количества потребляемых калорий.

Диетические рекомендации для американцев на 2015–2020 годы содержат следующие рекомендуемые суточные количества (RDA) белка по полу и возрастным группам:

На количество белка, необходимое человеку, могут влиять многие факторы, включая уровень активности, вес, рост и беременны ли они.

Другие переменные включают долю аминокислот, доступных в определенных белковых продуктах, и усвояемость отдельных аминокислот.

Министерство сельского хозяйства США предоставляет калькулятор, чтобы помочь людям определить, сколько протеина и других питательных веществ им нужно.

Белок и калории

Белок - это источник калорий. Как правило, белки и углеводы содержат 4 калории на грамм. Жиры содержат 9 калорий на грамм.

В соответствии с рекомендациями по питанию для американцев от 10 до 35% дневной нормы калорий взрослого человека должно поступать из белка. Для детей это 10–30%.

Большинство людей в США удовлетворяют свои ежедневные потребности в белке.В среднем мужчины получают 16,3% калорий из белков, а женщины - 15,8%.

Некоторые диеты рекомендуют употреблять больше белка, чтобы похудеть.

Aa 2015 обзор показывает, что соблюдение определенного типа высокобелковой диеты может способствовать снижению веса, но исследователям необходимо провести дополнительные исследования, чтобы установить, как эффективно применять такую ​​диету.

Увеличивая потребление белка, важно убедиться, что в рационе все еще содержится достаточное количество клетчатки, такой как фрукты, овощи и цельнозерновые продукты.

Замена обработанных пищевых продуктов и источников нездоровых жиров или сахара в рационе белком может способствовать здоровому питанию.

Прежде чем вносить существенные изменения в свой рацион, человеку рекомендуется поговорить со своим врачом о лучших стратегиях и советах.

О диетах с высоким содержанием белка читайте здесь.

Дефицит белка из-за низкого потребления белка с пищей необычен для США

Однако нехватка белка в других странах вызывает серьезную озабоченность, особенно у детей.Дефицит белка может привести к недоеданию, например квашиоркору и маразму, которые могут быть опасными для жизни.

Дефицит белка может возникнуть, если у человека есть состояние здоровья, в том числе:

Очень низкое потребление белка может привести к:

  • слабому мышечному тонусу
  • отеку или отеку из-за задержки жидкости
  • тонким, ломким волосам
  • кожи поражения
  • у взрослых, потеря мышечной массы
  • у детей, дефицит роста
  • дисбаланс гормонов

Протеиновые коктейли и протеиновые порошки содержат большое количество белка.Протеиновые порошки могут содержать 10–30 г белка на мерную ложку. Они также могут содержать добавленный сахар, ароматизаторы, витамины и минералы.

Белок в протеиновых коктейлях или порошках может поступать из:

  • растений, таких как горох или соевые бобы,
  • молока, такого как казеин или сывороточный белок
  • яиц

Для наращивания и восстановления мышц необходим белок. Многие спортсмены и бодибилдеры используют белковые продукты для ускорения роста мышц.

В настоящее время доступен широкий спектр протеиновых добавок, многие утверждают, что они способствуют снижению веса и увеличению мышечной массы и силы.

В обзоре 2018 года сообщается, что прием белковых добавок значительно улучшает размер и силу мышц у здоровых взрослых, которые выполняют упражнения с отягощениями, такие как поднятие тяжестей.

Однако протеиновые коктейли и порошки считаются диетическими добавками и поэтому не регулируются Управлением по контролю за продуктами и лекарствами (FDA). Это означает, что люди не могут гарантировать, что продукты содержат то, что заявляет производитель.

Некоторые добавки могут также содержать запрещенные или вредные для здоровья вещества, такие как тяжелые металлы или пестициды.

Многие белковые продукты содержат много добавленного сахара и калорий, что может привести к скачкам сахара в крови и увеличению веса, поэтому очень важно проверять этикетки.

Большинство людей, включая спортсменов, могут получать достаточное количество белка из сбалансированной диеты без добавок. Постоянный прием слишком большого количества белка может вызвать серьезные проблемы со здоровьем.

Некоторым людям может быть полезно использовать протеиновый порошок для решения проблем со здоровьем, в том числе тех, у кого:

  • снижение аппетита, которое может возникнуть в результате пожилого возраста или лечения рака
  • рана, которая плохо заживает, поскольку белок может помочь восстановление организма и замена клеток
  • заболевание, такое как серьезный ожог, требующее дополнительных калорий и белка

Для большинства людей разнообразная и здоровая диета обеспечит достаточным количеством белка.Для максимальной пользы для здоровья люди могут получать белок из различных источников. К ним относятся рыба, мясо, соя, бобы, тофу, орехи и семена.

Вот несколько советов по добавлению большего количества белка в рацион:

  • Замените обычные закуски закусками с высоким содержанием белка, такими как орехи, жареный нут и арахисовое масло.
  • Добавляйте фасоль и горох в супы, гарниры или салаты. Из них также получаются отличные основные блюда.
  • Включайте один продукт с высоким содержанием белка в каждый прием пищи.
  • Замените источник углеводов источником белка, например, заменив утром кусок тоста на яйцо.
  • Прежде чем добавлять протеиновые батончики в рацион, проверьте этикетки, так как они могут содержать много сахара.

Чтобы ограничить потребление жиров при увеличении потребления белка, выбирайте нежирное мясо, птицу и молочные продукты или обрезайте жир перед едой. Попробуйте использовать методы приготовления, которые не добавляют лишнего жира, например приготовление на гриле.

Избегайте обработанного мяса и других обработанных пищевых продуктов, так как они могут иметь негативные последствия для здоровья.По возможности выбирайте продукты, богатые питательными веществами, а не обработанные.

Белок - важная часть любой диеты. FDA рекомендует взрослым потреблять 50 граммов (г) белка в день в рамках диеты, состоящей из 2000 калорий, хотя конкретные потребности человека зависят от его возраста, пола, уровня активности и других факторов.

Большинство людей в США удовлетворяют свои ежедневные потребности в белке. Если человек хочет увеличить потребление белка, он может сделать это, добавляя здоровую пищу с высоким содержанием белка в каждый прием пищи.

Q:

Опасно ли использование протеиновых коктейлей и сывороточного протеина в диете для похудения?

A:

Протеиновые коктейли и сывороточный протеин приемлемы для включения в план здоровой диеты для похудания, если общее ежедневное потребление протеина не всегда превышает рекомендуемую дневную норму протеина для человека, и пока человек заменяет другие источники калорий белками, а не просто добавляет дополнительные калории в свой день.

Сильно превышение потребности в белке может нанести вред здоровью человека, включая повреждение почек и обезвоживание.

Кэтрин Маренго LDN, RD Ответы отражают мнение наших медицинских экспертов. Весь контент носит исключительно информационный характер и не может рассматриваться как медицинский совет. .

Смотрите также

 
 
© 2020 Спортивный клуб "Канку". Все права защищены.