Простые белки состоят из


белки — урок. Биология, Общие биологические закономерности (9–11 класс).

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка. Она уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

 

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

 

Разрушение первичной структуры необратимо.

 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

функции, синтез, строение, свойства, продукты богатые белком, виды, состав и норма в день

Содержание статьи:

  1. Что такое белок
  2. Виды белков
  3. Синтез белка
  4. Состав белков
  5. Свойства
  6. Функции белков
  7. Строение
  8. Переваривание белков
  9. Обмен белков в организме
  10. Продукты богатые белком
  11. Норма в день для организма
  12. Усваиваемость белка
  13. Вред белков

Белки – это важные компоненты, которые имеют большое значение для нормальной работы организма. Источниками этих веществ являются животные и растительные продукты. Чтобы белковые элементы полноценно усваивались организмом, необходимо правильно употреблять их.

Белки (белок)

Что такое белок

Белок - это органическое соединение, которое включает альфа-аминокислоты. Они соединяются в цепь пептидной связью. В живых организмах белковый состав определяется генетическим кодом. В процессе выработки этих веществ обычно принимает участие 20 аминокислот. Их сочетания создают белковые молекулы, которые отличатся своими свойствами.

Виды белков

Виды белков

Виды белков бывают следующие:

  1. Белки куриных яиц. Они усваиваются лучше всего и считаются эталонными. Всем известно, что яйца включают белок, который почти на 100 % состоит из альбумина, и желток.
  2. Казеин. При попадании в желудок вещество превращается в сгусток, который долгое время переваривается. Это обеспечивает невысокую скорость расщепления белка, что провоцирует стабильное снабжение организма аминокислотами.
  3. Белки молочной сыворотки. Такие компоненты расщепляются быстрее всего. Уровень аминокислот и пептидов в крови увеличивается уже в течение 1 часа после употребления таких продуктов. При этом кислотообразующая функция желудка остается неизменной.
  4. Соевые белки. Такие вещества имеют сбалансированный состав важных аминокислот. После употребления подобных продуктов снижается содержание холестерина. Потому такую пищу стоит есть людям с лишним весом. При этом главным минусом соевых белков считается наличие ингибитора пищеварительного фермента трипсина.
  5. Растительные белки. Такие вещества усваиваются человеческим организмом достаточно плохо. Их клетки обладают толстыми оболочками, которые не поддаются влиянию пищеварительного сока. Также проблемы с усвоением обусловлены наличием ингибиторов пищеварительных ферментов в отдельных растениях.
  6. Рыбный белок. Изолят рыбного белка достаточно медленно расщепляется до состояния аминокислот.

Синтез белка

Синтез белка

Синтез белка осуществляется в особых частицах – рибосомах.

Этот процесс происходит в несколько стадий:

  • активация аминокислот;
  • инициация белковой цепи;
  • элонгация;
  • терминация;
  • сворачивание и процессинг.

Состав белков

Состав белков

Состав белков представляет собой линейные полимеры, которые включают остатки α-L-аминокислот. Также в белковых молекулах могут присутствовать модифицированные аминокислотные остатки и составляющие неаминокислотной природы.

Аминокислоты обозначают сокращениями, включающими 1 или 3 буквы. Белки, которые имеют длину от 2 до нескольких десятков аминокислотных остатков, называют пептидами. Если наблюдается высокая степень полимеризации, их именуют белками. Однако такое деление считается достаточно условным.

Свойства белков

Свойства белков

Для белков характерны следующие свойства:

  1. Различная растворимость в воде. Белковые элементы, которые растворяются, приводят к формированию коллоидных растворов.
  2. Гидролиз. Под влиянием ферментов или растворов минеральных кислот разрушается первичное строение белка и формируется смесь аминокислот.
  3. Денатурация. Под этим термином понимают частичное или полное разрушение структуры белковой молекулы. Этот процесс может происходить под воздействием разных факторов – повышенных температур, растворов солей тяжелых металлов, кислот или щелочей, радиоактивного излучения, отдельных органических веществ.

Функции белков

 Рассмотрим детальнее ряд важных функций белков:

  1. Строительная. Такие вещества принимают участие в формировании клеток и внеклеточных элементов. Они присутствуют в составе мембранклеток, сухожилий, волос.
  2. Транспортная. Белковый компонент крови, который называется гемоглобином, присоединяет кислород и распространяет его в разные ткани и органы. После чего обратно переносит углекислый газ.
  3. Регуляторная. Гормоны белкового характера участвуют в обменных процессах. Инсулин отвечает за регуляцию содержания глюкозы в крови, обеспечивает выработку гликогена, повышает трансформацию углеводов в жиры.
  4. Защитная. При попадании в организм инородных объектов или микроорганизмов вырабатываются особенные белки – антитела. Они помогают связать и нейтрализовать антигены. Фибрин, который вырабатывается из фибриногена, останавливает кровотечения.
  5. Двигательная. Существуют особые сократительные белковые элементы. К ним относят актин и миозин. Эти веществаобеспечивают сокращение мышечных тканей.
  6. Сигнальная. В поверхностной клеточной мембране присутствуют белковые молекулы, которые могут менять третичную структуру под влиянием внешних факторов. Это помогает принимать сигналы извне и передавать в клетку команды.
  7. Запасающая. У животных белковые вещества обычно не запасаются. К исключениям относят яичный альбумин и казеин, который присутствует в молоке. При этом белки способствуют скоплению определенных веществ. Распад гемоглобина приводит к тому, что железо не выводится, а сохраняется. Благодаря этому формируется комплекс с ферритином.
  8. Энергетическая. Распад 1 г белка сопровождается синтезом 17,6 кДж энергии. Вначале белковые элементы распадаются до аминокислот, а затем – до конечных продуктов. В результате вырабатывается вода, аммиак и углекислый газ. При этом белки применяются в качестве источника энергии лишь в том случае, если остальные – израсходованы.
  9. Каталитическая. Это одна из наиболее важных функций белковых элементов. За нее отвечают ферменты, которые активизируют биохимические процессы в клеточных структурах.

Строение белков

Строение белков

Среди органических веществ белки, которые называются биополимерами, считаются самыми многочисленными. Они отличаются разнообразием. На долю этих веществ приходится 50-80 % сухой массы клетки.

Белковые молекулы отличаются большими размерами. Потому их нередко именуют макромолекулами. В строение белков входят углерод, водород, азот, кислород. Помимо этого, в них могут присутствовать сера, железо, фосфор.

Белки отличаются числом – от 100 до нескольких тысяч, составом, последовательностью мономеров. В качестве мономеров выступают аминокислоты.

Переваривание белков

Переваривание белков

Белки усваиваются в желудке и тонком кишечнике. Процесс переваривания представляет собой гидролитическое расщепление белков до аминокислот.

Он имеет определенные особенности:

  • протеолитические ферменты продуцируются в неактивном состоянии;
  • активирование наблюдается в просвете пищеварительного тракта за счет частичного протеолиза;
  • протеазы пищеварительного тракта характеризуются субстратной специфичностью – они могут относиться к эндопептидам или экзопептидазам.

Основным ферментом желудка, который расщепляет белки, считается пепси. Он синтезируется в неактивном состоянии и представляет собой профермент пепсиноген. Под воздействием соляной кислоты наблюдается частичный протеолиз пепсиногена. В результате появляется активная форма – пепсин.

Обмен белков в организме

Обмен белков в организме

Обмен белков в организме значительно сложнее, чем метаболизм липидов или углеводов. Жирные кислоты попадают в клетки почти в исходном виде, а углеводы – служат источником энергии. При этом основной строитель мышц претерпевает немало изменений в организме. На отдельных этапах белок преобразуется в углеводы. Как следствие, вырабатывается энергия.

Существует несколько этапов белкового обмена, для каждого из которых характерны определенные особенности:

  1. Попадание белков в организм. Под действием слюны происходит расщепление связей гликогена. Как следствие, формируется глюкоза, доступная для усвоения. Оставшиеся ферменты запечатываются. На этой стадии белки, которые присутствуют в продуктах, распадаютсяна отдельные элементы.Впоследствии они будут перевариваться.
  2. Переваривание. Под действием панкреатина и остальных ферментов наблюдается последующая денатурация до белков первого порядка. Организм способен получать аминокислоты исключительно из простейших белковых цепей. Для этого он вырабатывает кислоту. Это облегчает расщепление веществ.
  3. Расщепление на аминокислоты. Под действием клеток слизистых оболочек кишечника денатурированные белки попадают в кровь. Простой белок преобразуется организмом в аминокислоты.
  4. Расщепление до энергии. Под действием большого количества заменителей инсулина и ферментов для усваивания углеводов белок трансформируется в глюкозу. При нехватке энергии организм не выполняет денатурацию белка, а сразуегорасщепляет. В результате вырабатывается чистая энергия.
  5. Перераспределение аминокислот. Белковые элементы циркулируют в системном кровотоке и под действием инсулина попадают во все клетки. Как следствие, образуются требуемые аминокислотные связи. По мере распространения белков по организму происходит восстановление фрагментов мышечных элементов и структур, которые связаны со стимуляцией выработки, работой мозга, дальнейшей ферментацией.
  6. Образование новых белковых структур. Аминокислоты связываются с микроразрывами в мышцах и приводят к созданию новых тканей. Как следствие, наблюдается гипертрофия мышц. Аминокислоты в требуемом составе трансформируются в мышечно-белковую ткань.
  7. Обмен белков. При избытке таких структур под влиянием инсулина они снова проникают в систему кровообращения. Это приводит к формированию новых структур. При существенном напряжении в мышцах, длительном голодании или в период заболевания организм использует белки для компенсации недостатка аминокислот в остальных тканях.
  8. Перемещение липидных структур. Белки, которые соединяются в фермент липазу, способствуют перемещению и перевариванию с желчью полинасыщенных жирных кислот. Эти элементы принимают участие в перемещении жиров и выработке холестерина. С учетом состава аминокислот белки могут синтезироваться в полезный или вредный холестерин.
  9. Выведение окисленных продуктов. Использованные аминокислоты покидают организм с продуктами обмена. Мышцы, которые повреждаются вследствие нагрузок, тоже выводятся из организма.

Продукты богатые белком

Продукты богатые белком

Существует довольно много источников таких элементов. Животные продукты богатые белком, бывают следующие:

  1. Куриное мясо. 100 г продукта включает около 20 г белков. При этом такое мясо почти не содержит жира. Это актуально для людей, которые контролируют свой вес или занимаются спортом.
  2. Рыба. Самыми ценными источниками белка считаются тунец и лосось. Помимо этого, в продуктах имеются ценные кислоты омега-3, которые обеспечивают стабилизацию функций сердца и улучшают настроение.
  3. Свинина. В зависимости от жирности мяса в 100 г продукта может присутствовать 11-16 г белков. Также свинина включает витамины группы В.
  4. Яйца. В 1 яйце присутствует 6 г белка. Также продукт включает витамин В12 и холин.
  5. Говядина. На 100 г продукта приходится 19 г белков. Также говядина включает железо, карнитин и креатин

К растительным источникам белков стоит отнести следующее:

  1. Бобовые. Эти продукты включают большое количество белков. 100 г гороха содержит 23 г этих компонентов, а в сое присутствует 34 г белков.
  2. Орехи. Они представляют собой ценные источники белков и включают ненасыщенные жирные кислоты.
  3. Грибы. Эти продукты включают 2-5 % белков от общего количества. При этом есть сведения, что пищевые компоненты из грибов усваиваются с большим трудом.
  4. Гречка. В 100 г продукта присутствует 13 г белков. В гречке нет глютена, потому она вызывает аллергических реакций. При этом крупа включает фитонутриенты, которые сказываются на выработке инсулина и восстанавливают метаболизм.

Норма белка в день для организма

Норма белка в день для организма

Норма белка в день для организма взрослого человека составляет минимум 50 г в чистом виде, что соответствует 150 г белого мяса или рыбы. Люди, которые активно занимаются спортом и нацелены на развитие мышечных тканей, должны употреблять большее количество белков.

Для профилактики распада мышечной ткани женщины должны употреблять минимум 1 г белка на 1 кг веса. Однако оптимальным количеством считается 2 г. Для мужчин этот параметр увеличивается до 3 г. Это означает, что представитель сильного пола весом 90 кг должен съедать в день 270 г чистого белка.

Усваиваемость белка

Усваиваемость белка

При употреблении таких веществ, стоит помнить о чувстве меры. Избыточное количество белков представляет определенную опасность. Они с трудом перевариваются и могут вызвать нарушения пищеварительных функций.

Проблемы с усвоением белков могут возникать в следующих ситуациях:

  1. Избыточное количество белка за 1 прием пищи. За 1 прием организм не может усвоить больше 35 г белков. Помимо этого, избыток таких веществ отрицательно влияет на пищеварительные функции. Организм не способен переварить большое количество протеинов. Как следствие, неусвоенная часть начинает гнить в пищеварительных органах. Это провоцирует запоры, увеличение ацетона и нарушения в работе поджелудочной железы.
  2. Систематическое переедание. Диетологи советуют придерживаться принципов дробного питания – 4-5 раз в день. Это помогает лучше переваривать пищу, в том числе и белки.
  3. Употребление большого количества трудноперевариваемых белков. Протеины могут усваиваться в разном объеме. Есть белки, которые легко перевариваются. Однако существуют и трудноперевариваемые продукты. Эталоном белковой пищи считаются куриные яйца. Также к легким белкам относят нежирные кисломолочные продукты, куриное филе, кролика.
  4. Исключение жиров. Безусловно, жирные продукты содержат большое количество калорий и с трудом усваиваются. Однако полностью отказываться от них не следует. Это чревато гормональными нарушениями, ухудшением состояния волос и кожи. Также исключение жиров провоцирует нарушение процесса переваривания белков. Чтобы обеспечить эффективную работу печени и выведение продуктов синтеза белка, стоит включать в рацион желчегонные жиры. Они присутствуют в оливковом и кунжутном маслах.
  5. Дефицит жидкости. Нарушение питьевого режима провоцирует разные проблемы, включая ухудшение усвоения белка. В сутки человек должен пить 30-40 мл воды на 1 кг массы тела. В жаркую погоду или при серьезных физических нагрузках норма дополнительно повышается на 500-800 мл.
  6. Неправильные дополнения к белкам. Чтобы протеины усваивались максимально хорошо, их рекомендуется сочетать с овощами. В такой пище присутствуют ферменты и клетчатка. Это облегчает переваривание белков.

Вред белков

Вред белков

Нарушения белкового обмена представляют большой вред для организма. Эти вещества принимают участие почти во всех физиологических процессах. При нарушении обмена белков есть риск развития опасных нарушений.

При этом для здоровых людей белки представляют опасность лишь при избыточном потреблении в течение долгого периода времени. При соблюдении белковых диет, которые базируются на употреблении большого количества протеинов, нужно помнить о чувстве меры. Такие системы питания должны быть кратковременными и плавными.

Избыточное количество белков в рационе провоцирует поражение почек и печени. Это связано со сложным процессом выведения веществ. В этом случае вырабатываются кетоновые тела, которые провоцируют отравление организма.

При некоторых патологиях есть противопоказания к употреблению белков. К ним относят подагру, недостаточность почек и печени, хроническую форму панкреатита.

Белки представляют собой ценные вещества, которые принимают участие во всех физиологических процессах. Потому каждый человек должен употреблять достаточное количество протеинов. При этом необходимо помнить о чувстве меры и соблюдать рекомендации врачей.

Белки как молекулы. Состав, структура и функции белков

Белки выполняют ведущую роль в жизни организмов, преобладая в них и количественно. В теле животных они составляют 40-50% сухой массы, в растениях – 20-35%. Это самая разнообразная группа молекул – как химически, так и функционально. Состав и структура белков определяет огромное разнообразие их функций в клетке: их так много, что невозможно перечислить и описать их все. Однако можно сгруппировать эти функции в следующие восемь категорий. Но этот список также будет неполным.

    1. Ферментативная (каталитическая). Ферменты имеют белковое происхождение. Это трёхмерные глобулярные (свёрнутые) белки, плотно прилегающие к молекуле для её расщепления или сборки. Такая подгонка ускоряет специфические химические реакции в клетке.
    2. Защитная. Другие глобулярные белки используют свою форму для распознавания чужеродных микроорганизмов и раковых клеток. Эти приёмные устройства формируются эндокринной и иммунной системами. Многие живые организмы выделяют белки, ядовитые для других. Токсины синтезируют ряд животных, грибов, растений, микроорганизмов. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.
    3. Транспортная. Глобулярные белки присоединяют и транспортируют мелкие молекулы и ионы. Например, транспортный белок гемоглобин переносит кислород и углекислоту с потоком крови. Мембранные транспортные белки помогают молекулам и ионам двигаться через плазмалемму. Альбумины крови транспортируют жирные кислоты, глобулины – ионы металлов и гормоны.
    4. Структурная. Белковые молекулы входят в состав всех клеточных мембран и органоидов. Из белков построены элементы цитоскелета, сократительные структуры мышечных волокон. Структурными являются кератин в волосах, фибрин в сгустках крови, коллаген в коже, связках, сухожилиях и костях. В состав связок, стенок артерий и лёгких входит также структурный белок эластин.
    5. Двигательная. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Мышцы сокращаются за счёт движения двух видов белковых нитей: актина и миозина. Контрактильные (лат. contraho, contractum – стягивать, сокращать) протеины играют ключевую роль в цитоскелете и передвижении веществ внутри клетки. Белок тубулин также входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.
    6. Регуляторная. Крошечные белки, называемые гормонами, служат межклеточными посланниками в теле животных. Другие белки регулируют синтез РНК на ДНК, включая и выключая гены. Кроме того белки получают информацию, действуя в качестве рецепторов клеточной поверхности (эту функцию иногда считают отдельной, называя рецепторной).
    7. Запасающая. Кальций и железо хранятся в организме в виде ионов, связанных с белками хранения. В семенах растений запасаются резервные белки, которые используются зародышем при прорастании, а затем и проростком как источник азота.
  1. Энергетическая. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и липидов.
Сравнительный размер молекул белков. Слева направо: антитело (IgG) (150 кДа), гемоглобин (66,8 кДа), гормон инсулин, фермент аденилаткиназа и фермент глютаминсинтетаза.
Автор: en:User:Gareth White, CC BY-SA 2.0

Функции белков

 

Функция Класс белка Образцы Примеры использования
Каталитическая Ферменты Карбогидразы Расщепляют полисахариды
Протеазы Разрушают белки
Полимеразы Синтезируют нуклеиновые кислоты
Киназы Фосфорилируют сахара и белки
Защитная Иммуноглобулины Антитела Маркируют чужеродные белки для элиминации (удаления)
Токсины Змеиный яд Блокирует нервные импульсы
Клеточные белки-антигены МНС-белки (главный комплекс гистосовместимости) Опознание чужеродных белков
Транспортная Циркуляционные транспортёры Гемоглобин Переносит кислород и углекислый газ крови
Миоглобин Переносит кислород и углекислый газ в скелетных мышцах и мышце сердца
Цитохромы Транспортируют электроны
Мембранные транспортные белки Натриево-калиевый насос Возбуждение мембраны
Протонный насос Хемиосмос
Транспортёр глюкозы Транспортирует глюкозу в клетки
Структурная Волокна Коллаген Образует хрящ
Кератин Формирует волосы, ногти, перья и др.
Фибрин Образует сгустки крови
Двигательная Мускулы Актин Сокращение мышечных волокон
Миозин Сокращение мышечных волокон
Регуляционная Осмотические белки Сывороточный альбумин Поддерживает осмотическую концентрацию крови
Регуляторы генов Репрессор Регулирует транскрипцию
Гормоны Инсулин Контролирует уровень глюкозы в крови
Вазопрессин Увеличивает задержку воды почками
Окситоцин Регулирует сокращение матки и выделение молока
Запасающая Ион-связывание Ферритин Хранит железо, особенно в селезёнке
Казеин Хранит ионы в молоке
Кальмодулин Связывает ионы кальция

Белки – это полимеры

Белки, или протеины – это нерегулярные (не имеющие определённой закономерности в последовательности мономеров) полимеры, состоящие из мономеров, называемые аминокислотами. Протеины, в состав молекул которых входит от пятидесяти до нескольких тысяч остатков аминокислот, называются белками. Молекулы с меньшим количеством мономеров именуются пептидами.

Общие сведения о пептидах и белках

Белок состоит из одной или нескольких длинных неразветвлённых цепей. Каждая цепь называется полипептидом и состоит из аминокислот, скреплённых пептидными связями. Термины «белок» и «полипептид» часто используются свободно, что может вызывать путаницу. Для белка, который включает только одну полипептидную цепь, оба термина являются синонимами.

В природе существуют около 500 аминокислот. В образовании белков обычно (но не всегда) участвуют только 20 из них – их называют белокобразующими. Порядок соединения мономеров в белке определяет его структуру и функции. Многие учёные считают, что аминокислоты были первыми органическими молекулами, появившимися на Земле. Возможно, океаны, которые существовали в начале истории нашей планеты, содержали большое их разнообразие.

Белокобразующие аминокислоты

Автотрофные организмы синтезируют все необходимые им аминокислоты из продуктов фотосинтеза и азотсодержащих неорганических соединений. Для гетеротрофов источником аминокислот являются продукты питания. В организме человека и животных некоторые аминокислоты могут синтезироваться из продуктов обмена веществ (в первую очередь — из других аминокислот). Такие аминокислоты называются заменимыми.

Другие же, так называемые незаменимые аминокислоты, не могут быть собраны в организме и поэтому должны постоянно поступать в него в составе белков пищи. Протеины, содержащие остатки всех незаменимых аминокислот, называются полноценными. Неполноценные белки – это те, в составе которых отсутствуют остатки тех или иных незаменимых аминокислот.

Незаменимыми аминокислотами для человека являются: триптофан, лизин, валин, изолейцин, треонин, фенилаланин, метионин и лейцин. Для детей незаменимыми являются также аргинин и гистидин.

Полипептидные цепи могут быть очень длинными и включать самые разные комбинации аминокислотных остатков. Каждый конкретный белок характеризуется строго постоянным составом и последовательностью аминокислот.

Димер мембранного белка кальсеквестрина.
Deposition authors: Wang, S., Trumble, W.R., Liao, H., Wesson, C.R., Dunker, A.K., Kang, C., CC BY 3.0

Белки, образованные только остатками аминокислот, называются простыми. Сложными являются протеины, имеющие в своём составе компонент неаминокислотной природы. Это могут быть ионы металлов (Fe2+, Zn2+, Mg2+, Mn2+), липиды, нуклеотиды, сахара и др. Простыми белками являются альбумины крови, фибрин, некоторые ферменты (трипсин) и др. Сложные белки – это большинство ферментов, иммуноглобулины (антитела).

Состав аминокислот

Аминокислоты, как следует из их названия, содержат основную аминогруппу (— NH2), а также кислотную карбоксильную группу (—COOH), обе они связаны с центральным атомом углерода. Углерод дополнительно скреплен с водородом и функциональной белковой группой, называемой радикалом (R). Эти компоненты полностью заполняют все связи центрального атома углерода.

Общая структура α-аминокислот, составляющих белки (кроме пролина).
Автор: User:X-romix

Уникальный характер каждой аминокислоты определяется природой группы радикала. Обратите внимание, что если группа радикала не содержит атома водорода (Н), как в глицине, то аминокислота хиральна и может существовать в форме двух энантиомеров: d или L. В белках живых систем содержатся обычно α (L)-аминокислоты, а β (d)-аминокислоты встречаются крайне редко.

Группа радикала определяет химические свойства аминокислот – они могут быть полярными или неполярными, гидрофобными или гидрофильными. Серин с радикалом -CH2OH является полярной молекулой, Аланин, который имеет –CH3 как группу радикала – неполярен.

Существуют также основные аминокислоты (более чем с одной аминогруппой) и кислые аминокислоты (более чем с одной карбоксильной группой). Наличие дополнительной амино- или карбоксильной группы оказывает влияние на свойства аминокислоты, которые играют определяющую роль в формировании пространственной структуры белка.

В состав радикала некоторых аминокислот (например, цистеина) входят атомы серы. Все 20 аминокислот сгруппированы в пять химических классов, основанных на группе их радикала.

  1. Неполярные аминокислоты, такие как лейцин, часто имеют в качестве радикала —CH2 или —CH3.
  2. Полярные незаряженные аминокислоты, такие как треонин, с радикалом, содержащим кислород или гидроксильную группу (-OH).
  3. Заряженные аминокислоты, такие как глутаминовая кислота, с радикалом, имеющим кислоты или основания, способные к ионизации.
  4. Ароматические аминокислоты, такие как фенилаланин, имеющий группу радикала, содержащую органическое (углеродное) кольцо с чередованием одиночных и двойных связей. Они также неполярны.
  5. Аминокислоты, обладающие особыми функциями и свойствами. Например, метионин, который часто является первой аминокислотой в цепи белков, пролин, вызывающий перегибы в цепях, цистин, связывающий цепи вместе.

Каждая аминокислота влияет на форму белка по-разному, в зависимости от химической природы боковых групп. Например, части белковой цепи с многочисленными неполярными аминокислотами сворачиваются внутрь своей цепи путём гидрофобного исключения.

Белки и пептидные связи

В дополнении к группе радикала каждая аминокислота имеет положительно заряженную аминогруппу (NH3 +) на одном конце и отрицательно заряженную гидроксильную группу (COO -) на другом. Амино- и карбоксильные группы у пары аминокислот могут подвергаться реакции дегидрации (выделение молекулы воды) с образованием ковалентной связи. Ковалентная связь, скрепляющая две аминокислоты, называется пептидной. Скреплённые таким способом аминокислоты не могут свободно вращаться вокруг N-C связи. Этот факт является основным фактором образования конструкции белковых молекул.

Пептидная связь

Наличие как основной, так и кислотной групп обусловливает амфотерность (проявление как кислотных, так и основных свойств) и высокую реакционную способность аминокислот.

При соединении двух аминокислот образуется дипептид. На одном конце молекулы дипептида находится свободная аминогруппа, на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется более 10 остатков аминокислот, то образуется полипептид.

Новаторская работа Фредерика Сангера в начале 1950-х годов доказала, что каждый вид белка имеет определённую аминокислотную последовательность. Для отщепления аминокислот он использовал химические методы, после этого определял их. Сангер преуспел в расшифровке аминокислотной последовательности инсулина. Он продемонстрировал, что все молекулы инсулина имеют одинаковый состав аминокислот.

Уровни структурной организации белков

Форма белка определяет его функцию. Один из способов изучить что-то столь же маленькое как белок – посмотреть на него при помощи коротковолнового излучения, которое представлено рентгеновскими лучами. Рентгеновские лучи пропускают через белок для получения дифракции его узора. Эта картинка кропотливо анализируется и позволяет исследователю построить трёхмерное изображение молекулы с положением каждого её атома. Первым белком, проанализированным таким образом, был миоглобин; вскоре такому же анализу был подвергнут связанный с ним белок гемоглобин.

Когда было изучено достаточное количество протеинов, стал очевиден общий принцип их строения: в каждом исследованном белке все внутренние аминокислоты, такие как лейцин, валин и фенилаланин, неполярны. Тенденция воды к исключению неполярных молекул буквально толкает такие части цепи аминокислот внутрь протеина. Неполярные аминокислоты вынуждены тесно контактировать друг с другом, оставляя мало свободного места внутри молекулы. Полярные и заряженные аминокислоты концентрируются на поверхности белка, за исключением немногих, играющих ключевые функциональные роли.

Структура белков, как правило, описывается как иерархия четырёх уровней: первичного, вторичного, третичного и четвертичного. Мы рассмотрим эту точку зрения, а затем интегрируем её с более современным подходом, вытекающим из расширяющихся знаний о белковой структуре.

Уровни организации молекул белка

Первичная структура белков

Первичная структура белка – это его аминокислотная последовательность, т. е. это цепочка из множества аминокислотных остатков, соединённых пептидными связями. Это наиболее важная структура, так как именно она определяет форму, свойства и функции белка. На основе первичной структуры создаются другие формы молекулы.

Группы радикалов, которыми отличаются аминокислоты, не играют роли в пептидной цепи белков и протеин может включать любую последовательность аминокислот. Так как любая из 20 аминокислот может появиться в любом месте, белок, содержащий 100 мономеров, может образовать любую из 20 100 различных аминокислотных последовательностей. Это важное свойство белков позволяет им быть разнообразными, но каждый из них функционирует только при определённой аминокислотной последовательности.

Вторичная структура белка

Боковые и пептидные группы полипептидных цепей могут образовывать водородные связи. Вторичная структура белка возникает в результате связывания атомов водорода NH-групп и кислорода CO-групп. Полипептидная цепь при этом спирально закручивается. Водородные связи слабые, но благодаря их большому числу они обеспечивают стабильность этой структуры. Спиральную конфигурацию имеют, например, молекулы кератина, миозина и коллагена.

Водородные связи пептидов могут образовываться с водой. Если связей с водой будет слишком много, белки не смогут приобрести глобулярной структуры. Лайнус Полинг предположил, что пептидные группы могут взаимодействовать друг с другом, если пептид свёрнут в спираль, которую он назвал α-спиралью. Этот вид регулярного взаимодействия в пептиде формирует его вторичную структуру.

Вторичная структура инсулина

Другая форма вторичной структуры формируется между зонами пептида, расположенными в один ряд, в результате чего получается плоская молекула, собранная в складки, называемая β-листом. Части белка могут быть либо параллельными, либо антипараллельными – в зависимости от того, являются ли смежные участки пептида ориентированными в одном или в противоположном направлении.

Эти два вида вторичной структуры создают зоны белка – цилиндрические (α-спирали) и плоские (β-листы). Конечная структура белка может включать области каждого типа вторичной структуры. Например ДНК-связывающие белки обычно имеют области α-спирали, которые могут лежать поперёк ДНК и взаимодействовать непосредственно с основаниями ДНК. Белки порины, образующие отверстия в мембранах, состоят из β-листов. В гемоглобине α и β-структуры (глобины) имеют в молекуле свои зоны.

Вторичная структура белков

Третичная структура белков

Окончательная структура химически связанных белков называется третичной. Третичная структура формируется за счет образования водородных, ионных и других связей, возникающих в водной среде между разными группами атомов белковой молекулы вторичной структуры.

У некоторых белков важную роль в образовании третичной структуры играют S – S связи (дисульфидные) между остатками цистеина (аминокислоты, содержащей серу). При этом полипептидная спираль укладывается в своеобразный клубок (глобулу) таким образом, что гидрофобные аминокислотные радикалы погружаются внутрь глобулы, а гидрофильные располагаются на поверхности и взаимодействуют с молекулами воды. Третичной структурой определяются специфичность белковых молекул, их биологическая активность. Её имеют многие белки, например миоглобин (белок, который участвует в создании запаса кислорода в мышцах) и трипсин (фермент, расщепляющий белки пищи в кишечнике).

Третичная структура стабилизируется рядом сил, в том числе:

  • водородными связами между радикалами различных аминокислот;
  • электростатическим притяжением радикалов с противоположными зарядами;
  • гидрофобным исключением неполярных радикалов;
  • ковалентными дисульфидными связами.

На стадии третичной структуры по форме молекул белки можно разделить на две группы:

  • глобулярные – имеют округлую форму. Такую форму имеют глобулины и альбумины крови, фибриноген, гемоглобин;
  • фибриллярные – характеризуются вытянутой, нитевидной формой молекул. Это кератин, коллаген, миозин, эластин и др.

Четвертичная структура белка

Когда два или более полипептида связываются с образованием функционального белка, отдельные его цепи называются субъединицами. Расположение этих субъединиц и есть четвертичная структура. Субъединицы в таких белках чаще всего неполярны, поэтому они не связаны химически и отвечают за отдельные виды деятельности. Прочность четвертичной структуры обеспечивается взаимодействием слабых межмолекулярных сил.

Четвертичная структура характерна для белка гемоглобина. Вспомните, что гемоглобин состоит из двух α-цепей и двух β-цепей, а ещё в его состав входит небелковый компонент – гем.

Субъединицы располагаются в их окончательной четвертичной структуре. Это конечная структура некоторых, но не всех белков. У протеинов, которые состоят только из одной полипептидной цепи, например у фермента лизоцима, конечной структурой является третичная.

Мотивы и домены – структурные элементы белков

Ручное определение последовательности аминокислот в белке – трудоёмкая работа. Эту ситуацию изменило открытие способности хранения информации о белке молекулой ДНК. Первоначально геном человека был расшифрован вручную. Появление технологий следующего поколения привело к заметному ускорению секвенирования.

Сегодня расшифрованы более 40 000 бактериальных геномов и почти 8 000 геномов эукариот, в том числе 80 последовательностей генов млекопитающих. Так как состав ДНК имеет непосредственное отношение к последовательности аминокислот в белках, у биологов теперь есть огромная база данных строения протеинов.

Новая информация заставила задуматься о логике генетического кода и основных закономерностях структуры белка. Исследователи до сих пор рассматривают иерархическую систему из четырёх уровней как важную, но в лексикон биологов вошли и новые термины: мотив укладки и белковый домен.

Мотив укладки белковых молекул

Когда биологи обнаружили третичную структуру белка (ещё более трудоёмкая работа, чем определение последовательности аминокислот в цепи), они заметили сходные элементы, расположенные в непохожих белках. Подобные структуры называются мотивами, а иногда «сверхсекундными структурами». Термин «мотив» заимствован из искусства и относится к тематическому повторяющемуся элементу в музыке или дизайне.

Один общий мотив β-α-β образует так называемую «складку Россмана» у большого количества протеинов. Вторым часто встречающимся мотивом является β-баррель, который представляет собой β-лист, сложенный по кругу, чтобы сформировать трубку. Третий тип мотива – спираль-поворот-спираль, состоит из двух α-спиралей, разделённых изгибом. Его используют белки для связывания с молекулой ДНК.

Логику структуры мотивов укладки исследователи до сих пор не могут понять. Вероятно, если аминокислоты являются буквами в языке белков, то мотивы представляют собой повторяющиеся слова или фразы. Мотивы укладки помогли определить неизвестные функции белков, а база данных белковых мотивов используется для поиска новых неизвестных протеинов.

Мотивы укладки являются довольно консервативными и встречаются в белках, которые не имеют ни функциональных, ни эволюционных связей. Определение мотивов укладки лежит в основе физической, или рациональной классификации белков.

Белковые домены

Домены – это функциональные единицы в виде глобулы внутри более крупной структуры белков. Их можно рассматривать как субструктуры внутри третичной структуры белка. В языке белков это «абзацы». Большинство белков состоит из нескольких доменов, которые выполняют различные части функций протеинов.

Во многих структурах эти домены могут быть физически разделены. Например, так устроены факторы транскрипции – белки, которые связываются с ДНК и инициируют построение РНК по комплементарной ей ДНК. Было выяснено, что если ДНК-связывающие области поменять местами с факторами транскрипции, специфичность фактора может быть изменена без изменения его способности стимулировать транскрипцию. Эксперименты по замене доменов были проведены со многими факторами транскрипции, и они указывают, что активационные и ДНК-связывающие домены действуют отдельно.

Эти образования также могут помогать протеинам складываться. По мере того, как полипептидная цепь приобретает свою структуру, домены принимают правильную форму. Это действие может быть продемонстрировано экспериментально. Искусственное продуцирование фрагмента полипептида, который образует домен в интактном белке, показывает, что фрагмент складывается, чтобы сформировать такую же структуру, как у прототипа.

Процесс складывания, белки-шапероны

Первоначально биохимики думали, что новоиспечённые белки сворачиваются спонтанно, пробуя различные конфигурации, как гидрофобные взаимодействия с водой толкают неполярные аминокислоты внутрь белков до тех пор, пока не будет достигнута их окончательная структура. Оказалось, что эта точка зрения слишком проста. Цепи протеинов могут быть сложены многими способами, поэтому пробы и ошибки заняли бы слишком много времени. По мере того как первичная цепь складывается, приобретая финальную структуру, неполярные «липкие» внутренние участки во время промежуточных стадий обнажаются. Если эти промежуточные формы поместить в пробирку со средой, идентичной той, что внутри клетки, они прилипают к другим, и нежелательные белки-партнёры образуют клейкую массу.

Как клетки избегают того, чтобы их белки слипались в массу? Ответ на вопрос появился во время изучения необычных мутаций, которые спасают бактериальные клетки от размножения внутри них вирусов. При этом белки вирусов, произведённые внутри клетки, не могут сложиться как следует. Дальнейшее исследование помогло выяснить, что клетки содержат белки-шапероны, помогающие другим белкам складываться правильно.

Свёртывание белков

В настоящее время молекулярные биологи выявили массу белков, действующих как шапероны. Это большой класс полимеров, который можно разделить на подклассы. Представители шаперонов были найдены в каждом исследуемом организме. Некоторые из них, называемые тепловыми шоковыми белками, вырабатывается в ответ на повышение температуры тела. Высокие температуры служат фактором денатурации белков, шоковые белки-шопероны помогают белкам правильно сворачиваться и в такой ситуации.

Один из хорошо изученных классов этих белков, названных шаперонинами, был изучен у кишечной палочки (Escherichia coli). У мутантов при инактивации шаперонинов 30% бактериального белка не складывались должным образом. Шаперонины собираются в комплекс, напоминающий цилиндрический контейнер. Белки могут заходить в этот контейнер, и даже неправильно сложенные молекулы складываются там заново.

Исследователи склонны думать о белках как о фиксированных структурах, но это не относится к шаперонинам. Их гибкость поразительна. Видимо, это нужно им для выполнения своих функций. Клетки используют эти белки для складывания некоторых молекул протеинов и восстановления их неправильной структуры.

Денатурация инактивирует белки

Еще одной важной особенностью белков является то, что они проявляют свою активность лишь в узких температурных рамках и в определённом диапазоне кислотности среды.

Если условия, окружающие белок, изменяются, то он может частично потерять свою структуру или полностью развернуться. Этот процесс называется денатурацией. Белки могут быть денатурированы, когда рН, температура или ионная концентрация окружающего раствора изменена. Денатурация происходит вследствие разрыва водородных, ионных, дисульфидных и других связей, стабилизирующих пространственную структуру белковых молекул. При этом может утрачиваться их четвертичная, третичная и даже вторичная структуры.

Денатурированные белки как правило биологически неактивны. Это особенно значимо в отношении ферментов: так как почти каждая химическая реакция происходит при их помощи, жизненно важно, чтобы они функционировали нормально.

До появления морозильников и холодильников единственным способом предохранения продуктов от размножения в них микроорганизмов было хранение их внутри раствора, содержащего высокую концентрацию соли или уксуса, которые денатурировали ферменты микроорганизмов и предотвращали их рост.

Большинство ферментов функционирует в очень узком диапазоне условий окружающей среды. У каждого энзима этот диапазон специфичен. Ферменты крови, которые работают при рН около 7,4, быстро денатурируют в кислой среде желудка. И наоборот, протеолитические ферменты желудка, работающие при рН=2 или менее, разбираются в основной среде крови. Аналогично у организмов, живущих вблизи океанических гидротермальных источников, есть ферменты, которые хорошо работают только в экстремальных температурах (до 100°С). Эти организмы не могут выжить в более прохладных водах, потому что их энзимы не функционируют должным образом при относительно низких температурах.

Если нормальные показатели окружающего раствора восстанавливаются, небольшой белок, не потерявший первичной структуры, может восстановиться. Этот процесс называется ренатурацией, он происходит благодаря взаимодействию неполярных аминокислот и воды. Первоначально этот процесс был установлен для энзима рибонуклеазы, его ренатурация привела к выводу, что первичная структура определяет третичную структуру белка. Более сложные белки редко складываются вновь из-за их сложной окончательной структуры. Их денатурация носит необратимый характер.

Важно отличать денатурацию от диссоциации. Субъединицы белков с четвертичной структурой могут быть диссоциированы (разделены) без потери своей индивидуальной третичной структуры. Например, молекула гемоглобина может диссоциировать на 4 молекулы (2 α-глобина и 2 β-глобина) без денатурации свёрнутых глобиновых белков. Они легко восстанавливают свою четвертичную структуру из четырёх субъединиц.

 

 

Вам будет интересно

Из каких простых органических соединений состоят белки? Структура и свойства функций

Белки играют важную роль в работе организма человека. Из чего они состоят, каковы их структура и свойства, читайте в статье.

Общие сведения о белках и их классификации

Значение белков определили еще в девятнадцатом веке. Ученые дали название этим веществам «протеины», что означает «первые, главные». Химические реакции, происходящие в белке, имеют важную особенность. Они составляют основу при создании новых клеток.

Из-за сложного строения молекул белка и большого количества выполняемых функций ученым очень сложно создать единую классификацию. Поэтому знания о белках классифицировали по нескольким признакам:

  1. По составу химических веществ белки бывают простыми и сложными. Из чего состоят простые и сложные белки? В состав первых входят только аминокислоты. В сложных белках к ним добавляются небелковые соединения.
  2. По функциональному назначению белки, органические соединения, различаются по нескольким классам:
  • Каталитические белки – это ферменты, выполняющие функцию ускорения химических реакций. Без их участия невозможны процессы, которые называются синтезом и распадом.
  • Транспортные белки связывают гормоны, жирные кислоты и многие другие соединения органического и неорганического происхождения. После чего попадают в кровь и переносятся в ту область организма, где они нужны. Эти белки активно транспортируют вещества, используя для этого биологические мембраны сахаров, липидов, ионов и аминокислот.
  • Белки, выполняющие опорную функцию. С их участием формируется клеточный скелет. Самыми распространенными являются: коллаген, выполняющий соединительную функцию тканей, кератин ногтей и волос, эластин сосудистых клеток и другие. В сочетании с липидами они представляют структурную основу мембран.
  • Защитная функция белков. Антитела (иммуноглобулины) связывают попавшие в организм патогенные микроорганизмы, а затем нейтрализуют их влияние на организм человека. Без участия тромбинов и фибриногенов невозможен процесс свертывания крови.
  • Регуляторная функция – белок поддерживает в нормальном состоянии активность организма, органов, клеток и всех процессов, происходящих в организме.
  • Белки наделяют мышечные клетки способностью сокращаться, благодаря чему осуществляется движение. С помощью белков-рецепторов клетки организма воспринимают информацию из внешней среды, передают нервное возбуждение.

Что такое белки?

Это высокомолекулярные соединения органического состава. Из чего состоят белки? В их построении участвует двадцать видов остатков аминокислот, которые последовательно соединяются, образуя цепи большой длины. До научных исследований белком называли вещество яиц птиц, которое при нагревании свертывается, и образуется нерастворимая масса белого цвета.

Позже это название получили многие вещества растительного и животного происхождения, имеющие подобные свойства. Количество белков во всех живых организмах преобладает над другими соединениями. Их сухой вес составляет больше половины от всей массы белка.

Предположительно, в природе насчитывается до десятка миллиардов этих соединений индивидуального назначения. Для примера: бактерия кишечной палочки содержит три тысячи белков различных видов. К белкам относят ферменты, которые участвуют в химических превращениях, происходящих в клетках.

Состав белков

Белки – полимеры непериодического порядка. Из каких простых органических соединений состоят белки? Их мономерами являются двадцать видов аминокислот. В зависимости от возможности синтезироваться в организме аминокислоты бывают заменимыми и незаменимыми. Первые обладают способностью синтезироваться, а вторые – нет, более того, их присутствие в организме связано с поступлением пищи.

Из каких простых органических соединений состоят белки? По составу аминокислот различают полноценные и неполноценные белки. Первая группа характеризуется содержанием всех аминокислот, а вторая - отличается отсутствием каких-то из них.

Белки, содержащие только аминокислоты, называются простыми. Если, кроме аминокислот, присутствуют другие компоненты – сложными. В них могут быть металлы, углеводы, липиды, нуклеиновая кислота.

Простые белки

Из каких простых органических соединений состоят белки? Об их составе читайте ниже. Белки называют протеинами. По характерным свойствам разделяют на следующие группы:

  • Альбумины – обладают свойством растворяться в воде, при нагревании свертываться, не осаждаться растворами различных солей.
  • Глобулины – не растворяются в воде, а только в растворах солей слабой концентрации.
  • Гистоны – носят основной характер белка в виде нуклеопротеидов. Местом расположения являются лейкоциты и кровяные шарики.
  • Протамины – в их составе нет серы. В сильной степени проявляются основные свойства. В составе белка – нуклеопротеиды. Ими богаты сперматозоиды рыб.
  • Проламины – хорошо растворяются в спирте. Их содержат зерна хлебных злаков. Представителем проламинов является глиадин – основная составляющая клейковины.
  • Склеропротеины обладают свойством не растворяться. Содержатся в наружном покрове тел животных, скелете и соединительных тканях. Представлены коллагеном, кератином, фиброином, эластином.

Из каких простых органических соединений состоят белки? Они состоят из аминокислот разных видов, их в белке насчитывается двадцать.

Какие функции выполняют белки?

Органические соединения (белки) выполняют ряд функций:

  • Обеспечивают обменные и регуляторные процессы.
  • Выполняют доставку белка в кровь, которая обеспечивает нужными веществами все органы.
  • Формируют мышечные волокна.
  • Являются основой костных и соединительных тканей.
  • Регулируют процесс пищеварения, обмена энергией.
  • Управляют действиями генов.
  • Защищают организм, укрепляя иммунитет.

Углеводы

Это органические соединения природного происхождения, заряжающие организм энергией. Они нашли широкое распространение в природе. Их доля в растениях составляет семьдесят-восемьдесят процентов от общей массы всех сухих веществ, в животных организмах – только два. В состав углеводов входит карбонильная группа и небольшая часть гидроксильных. Эти соединения являются составной частью тканей и клеток в организме. Какие химические соединения называют углеводами? В состав углеводов входит кислород, водород, углерод. Хотя производные последнего вещества отличаются содержанием в них других элементов, азота, например.

Углеводы – продукт фотосинтеза. Без них невозможен биосинтез в растениях, так как они являются исходным веществом для этого процесса. Углеводы, являясь классом органических соединений, обладают большим разнообразием. Их роль имеет многоплановые аспекты.

Функции углеводов

Органические соединения имеют следующие функции:

  • Энергетическую – продукты окисления соединений (глюкоза, гликоген, крахмал) поступают в клетки, заряжая их энергией. Примерно шестьдесят процентов затраченной энергии компенсируется углеводами, которые поставляют ее в клетки крови. Энергия поступает в мозг, улучшая его деятельность.
  • Пластическую функцию – соединения являются составной частью многих структур на клеточном уровне, их содержат все клетки организма: биологические мембраны, органоиды клеток. С их помощью образуются ферменты, нуклеопротеиды и другие.
  • Защитную функцию – выделяемая железами слизь служит защитой внутренних стенок многих органов от различных нежелательных воздействий: механических, химических, бактериальных. Это достигается за счет большого содержания углеводов в вязких секретах.
  • Регуляторную функцию – углеводы регулируют перистальтику, так как употребление клетчатки с ее грубой структурой раздражает слизистую оболочку пищеварительного тракта.
  • Специфическую функцию – углеводы бывают разные. С помощью некоторых из них образуются антитела, обеспечивается специфичность групп крови, осуществляется проведение импульсов нервов.

Из чего состоит белок? Примеры простых и сложных белков

Чтобы представить, какое значение имеют белки, достаточно вспомнить широко известную фразу Фридриха Энгельса: «Жизнь – есть способ существования белковых тел». На самом деле на Земле эти вещества наряду с нуклеиновыми кислотами обуславливают все проявления живой материи. В данной работе мы выясним, из чего состоит белок, изучим, какую функцию он выполняет, а также определим особенности строения различных видов.

Пептиды – высокоорганизованные полимеры

Действительно, в живой клетке как растительной, так и животной, белки количественно преобладают над другими органическими веществами, а также выполняют наибольшее количество разнообразных функций. Они участвуют во множестве различных очень важных клеточных процессов, таких как движение, защита, сигнальная функция и так далее. Например, в мышечной ткани животных и человека пептиды составляют до 85 % от массы сухого вещества, а в костной и дерме – от 15-50 %.

Все клеточные и тканевые белки состоят из аминокислот (20 видов). Их количество в живых организмах всегда равно двадцати видам. Различные комбинации мономеров пептидов образуют разнообразие белков в природе. Оно исчисляется астрономическим числом 2х1018 возможных видов. В биохимии полипептиды называют высокомолекулярными биологическими полимерами – макромолекулами.

Аминокислоты – мономеры протеинов

Все 20 видов этих химических соединений являются структурными единицами белков и имеют общую формулу NH2-R-COOH. Они являются амфотерными органическими веществами, способными проявлять как основные, так и кислотные свойства. Не только простые белки, но и сложные, содержат так называемые заменимые аминокислоты. А вот незаменимых мономеров, например, таких как, валин, лизин, метионин можно встретить только в некоторых видах белков.Такие протеины именуют полноценными.

Поэтому, характеризуя полимер учитывают не только из скольких аминокислот состоит белок, но и какие именно мономеры соединяются пептидными связями в макромолекулу. Добавим еще, что заменимые аминокислоты, такие как аспарагин, глютаминовая кислота, цистеин могут самостоятельно синтезироваться в клетках человека и животных. Незаменимые мономеры белков образуются в клетках бактерий, растений и грибов. Они поступают в гетеротрофные организмы только с пищей.

Как образуется полипептид

Как известно, 20 различных аминокислот могут соединяться во множество всевозможных белковых молекул. Как же происходит связывание мономеров между собой? Оказывается, что карбоксильные и аминные группы рядом лежащих аминокислот взаимодействуют между собой. Образуются так называемые пептидные связи, а молекулы воды выделяются как побочный продукт реакции поликонденсации. Образовавшиеся молекулы белков состоят из остатков аминокислот и многократно повторяющихся пептидных связей. Поэтому их еще называют полипептидами.

Часто протеины могут содержать не одну, а сразу несколько полипептидных цепей и состоять из многих тысяч аминокислотных остатков. Более того, простые белки, а также протеиды способны усложнять свою пространственную конфигурацию. При этом создается не только первичная, но и вторичная, третичная и даже четвертичная структура. Рассмотрим этот процесс более детально. Продолжая изучать вопрос: из чего состоит белок, выясним какую же конфигурацию имеет эта макромолекула. Выше мы установили, что полипептидная цепь содержит множество ковалентных химических связей. Именно такая структура называется первичной.

В ней важную роль играет количественный и качественный состав аминокислот, а также последовательности их соединения. Вторичная структура возникает в момент образования спирали. Она стабилизируется многими вновь возникающими водородными связями.

Высшие уровни организации белков

Третичная структура появляется в результате упаковывания спирали в виде шара – глобулы, например, белок мышечной ткани миоглобин имеет именно такую пространственную структуру. Она поддерживается, как вновь образующимися водородными связями, так и дисульфидными мостиками (если в молекулу белка входит несколько остатков цистеина). Четвертичная форма – это результат объединения в единую структуру сразу нескольких белковых глобул посредством новых видов взаимодействий, например, гидрофобных или электростатических. Наряду с пептидами в четвертичную структуру входят и небелковые части. Ими могут быть ионы магния, железа, меди или же остатки ортофосфатной или нуклеиновых кислот, а также липиды.

Особенности биосинтеза протеинов

Ранее нами было выяснено из чего состоит белок. Он построен из последовательности аминокислот. Их сборка в полипептидную цепь происходит в рибосомах – немембранных органеллах растительных и животных клеток. В самом процессе биосинтеза также принимают участие молекулы информационной и транспортных РНК. Первые являются матрицей для сборки белка, а вторые транспортируют различные аминокислоты. В процессе клеточного биосинтеза возникает дилемма, а именно, белок состоит из нуклеотидов или аминокислот? Ответ однозначный – полипептиды как простые, так и сложные состоят из амфотерных органических соединений – аминокислот. В жизненном цикле клетки существуют периоды её деятельности, когда синтез белков происходит особенно активно. Это так называемые стадии J1 и J2 интерфазы. В это время клетка активно растет и нуждается в большом количестве строительного материала, которым и является белок. Кроме того, в результате митоза, заканчивающегося образованием двух дочерних клеток, каждая из них нуждается в большом количестве органических веществ, поэтому на каналах гладкой эндоплазматической сети идет активный синтез липидов и углеводов, а на гранулярной ЭПС происходит биосинтез белков.

Функции белков

Зная из чего состоит белок, можно объяснить как огромное разнообразие их видов, так и уникальные свойства, присущие эти веществам. Белки выполняют в клетке самые разнообразные функции, например, строительную, так как входят в состав мембран всех клеток и органоидов: митохондрий, хлоропластов, лизосом, комплекса Гольджи и так далее. Такие пептиды, как гамоглобулины или антитела – это примеры простых белков, выполняющих защитную функцию. Иными словами, клеточный иммунитет – это результат действия данных веществ. Сложный белок – гемоцианин, наряду с гемоглобином, выполняет у животных транспортную функцию, то есть переносит кислород в крови. Сигнальные белки, входящие в состав клеточных мембран, обеспечивают информирование самой клетки о веществах, пытающихся попасть в её цитоплазму. Пептид альбумин отвечает за основные показатели крови, например, за её способность к свертыванию. Белок куриных яиц овальбумин запасется в клетке и служит основным источником питательных веществ.

Белки – основа цитосклета клетки

Одна из важных функций пептидов – опорная. Она очень важна для сохранения формы и объема живых клеток. Так называемые подмембранные структуры – микротрубочки и микронити переплетаясь образуют внутренний скелет клетки. Белки, входящие в их состав, например, тубулин, способны легко сжиматься и растягиваться. Это помогает клетке сохранить свою форму при различных механических деформациях.

В растительных клетках, наряду с белками гиалоплазмы, опорную функцию выполняют также тяжи цитоплазмы – плазмодесмы. Проходя через поры в клеточной стенке, они обуславливают взаимосвязь между рядом лежащими клеточными структурами, образующими растительную ткань.

Ферменты – вещества белковой природы

Одно из важнейших свойств протеинов – их влияние на скорость протекания химических реакций. Основные белки способны к частичной денатурации – процессу раскручивания макромолекулы в третичной или четвертичной структуре. Сама же полипептидная цепь при этом не разрушается. Частичная денатурация лежит в основе как сигнальной, так и каталитической функций белка. Последнее свойство представляет собой способность ферментов влиять на скорость протекания биохимических реакций в ядре и цитоплазме клетки. Пептиды, которые, наоборот, снижают скорость химических процессов принято называть не ферментами, а ингибиторами. Например, простой белок каталаза является ферментом, который ускоряет процесс расщепления токсического вещества пероксида водорода. Оно образуется как конечный продукт многих химических реакций. Каталаза ускоряет его утилизацию до нейтральных веществ: воды и кислорода.

Свойства белков

Пептиды классифицируют по многим признакам. Например, по отношению к воде их можно разделить на гидрофильные и гидрофобные. Температура также по-разному влияет на структуру и свойства белковых молекул. К примеру, белок кератин – компонент ногтей и волос может выдерживать как низкую, так и высокую температуру, то есть является термолабильным. А вот белок овальбумин, уже упоминающийся ранее, при нагревании до 80-100 °С полностью разрушается. Это значит, что его первичная структура расщепляется на остатки аминокислот. Такой процесс называется деструкцией. Какие бы условия мы не создавали, в нативную форму белок возвратится уже не может. Двигательные белки – актин и милозин присутствуют в мышечных волокнах. Их поочередное сокращение и расслабление лежит в основе работы мышечной ткани.

Белки 🐲 СПАДИЛО.РУ

Теория для подготовки к блоку «Цитология»

Белки – наиболее важные органические соединения клетки. Их содержание колеблется от 50% до 80% в разных клетках организма.

Строение белков

В состав белков, кроме 4 основных химических элементов (углерод, кислорода, водород, азот), могут входит фосфор, сера, железо. Белки – сложные высокомолекулярные соединения, которые составлены из аминокислотных последовательностей. Аминокислоты состоят из двух частей: аминогруппы -NH2 и карбоксильной группы -COOH. Первая несет в себе основные свойства, а вторая – кислотные, что обуславливает активности и амфотерность этих соединений (Амфотерность – проявление кислотных или основных свойств в зависимости от реакции). Аминокислоты отличаются радикалами.

Строение аминокислоты

Аминокислоты ассоциируются с генетическим кодом, так как последовательности нуклеотидов кодируют триплеты нуклеотидов. Такие задачи изучаются в школе и встречаются в ЕГЭ. Всем, кто сталкивался с генетикой, хорошо знакома таблица аминокислот:

Таблица аминокислот

В один белок может входить много аминокислот. Они соединяются в цепь посредством образования пептидных связей: азот одной аминокислоты связывается с углеродом другой аминокислоты:

Строение белка. Зеленым цветом обозначена карбоксильная группа аминокислоты, голубым цветом — аминогруппа аминокислоты

В состав белка может входить даже несколько аминокислотных цепей. Всего аминокислот насчитывается около 170, однако основное разнообразие задают 20 аминокислот, что связано с тем, что одна аминокислота может кодироваться различными последовательностями кодонов, или другими словами, аминокислота может кодироваться разными триплетами нуклеотидов. Это одно из свойств генетического кода (свойство избыточности).

Некоторые аминокислоты животный организм синтезирует самостоятельно, но, как можно догадаться, не все. Такие аминокислоты называются незаменимыми аминокислотами, их следует употреблять с пищей. Например, лейцин используется не просто как биологическая добавка, что достаточно распространено среди фармакологических компаний, но и применяется при лечении заболеваний печени, а также анемии, она же малокровие.

Классификация белков

Протеины – белки, в состав которых входят только белковые молекулы.

Протеиды – белки, в состав которых, кроме белковых молекул, входят небелковые молекулы.

  • Гликопротеиды (белок + углевод)
  • Липопротеиды (белок + липид)
  • Нуклеопротеиды (белок + нуклеиновые кислоты)

Для того чтобы не путаться в понятиях, нужно вспомнить, что принимают спортсмены для того, чтобы скорее нарастить мышечную массу, то есть протеиновые коктейли, батончики и т.д. Именно протеиновые, это слово на слуху, пусть теперь оно ассоциируется с этой классификацией.

Уровни организации белковой молекулы

Структура белка именуется просто по счету, в зависимости от сложности укладки.

Первичная структура белка представляет собой прямую цепь из аминокислот. Она является главной и определяющей свойства, форму и функции белка.

Вторичная структура белка – уже две цепи. Однако эти цепи не идут параллельно друг другу. Они скручены в спираль и связаны водородными связями, которые их удерживают за счет того, что их много. ДНК была обнаружена именно в форме двойной спирали. В этом виде она наиболее известна.

Третичная структура белка – глобула. Глобула означает шар, что и является описанием структуры белка. В этом случае прочность обусловлена тремя видами связей: водородными, ионными и дисульфидными.

Четвертичная структура белка – это как бы глобула из глобул. Она встречается не у всех белков. Белок крови гемоглобин состоит из 4х субъединиц четвертичной структуры.

Денатурация – утрата белковой молекулой своей природной структуры. Это обратимый процесс, похожий на сохранение в игре. Если белок денатурировал, но его природная структура не нарушена, то он восстановится. Причин разрушения белка может быть много: высокая температура, химические повреждения, радиация, обезвоживание и т.д. Так что когда мы варим яйца или мясо, то происходит денатурация белка. Как мы видим, к исходному состояния он уже не возвращается (не ренатурирует). Денатурацию и ренатурацию просто запомнить по похожим словам: денатурация – деградация – разрушение; ренатурация – регенерация – восстановление.

Денатурация и ренатурация

Функции белков
1.Структурная функция

Белки входят в состав всего в клетке: мембраны и органоиды. Кроме того, есть белки, которые очень важно знать:

  • Коллаген – входит в состав соединительной ткани. Коллаген можно запомнить по кремам, которые обещают продлить молодость и расправить морщины.
  • Кератин – известен всем, кто когда-либо смотрел рекламу шампуня для волос. Кератин входит в структуру волос и прочих производных нашего и животного тела: шерсть, перья, ногти, когти, копыта, рога.
  • Эластин – как понятно из названия, отвечает за эластичность. Она важна а) в связках, так как они должны растягиваться для совершения движений и возвращаться в исходное состояние. Кстати, в том числе и голосовые связки; б) в сосудах, по которым течет кровь порой под большим давлением, с высоким давлением и скоростью.
2.Ферментативная функция

Ферменты – катализаторы (= ускорители химических реакций) белковой природы. С ферментами происходит тесное знакомство в разделе «пищеварение». Есть одно важное правило, которое нужно обязательно запомнить: все ферменты – белки, но не все белки – ферменты.

3.Транспортная функция

Белки-транспортеры осуществляют перенос веществ через мембрану клетки. Очень наглядным примером транспорта белками является белок-переносчик гемоглобин, благодаря которому мы дышим. В мышцах существует аналог этого белка – миоглобин (приставка мио- означает «сокращение», тем самым называя месторасположение белка).

4.Защитная функция

Изучая иммунитет, ученики и студенты знакомятся с антителами – специфическими белками крови, которые вырабатываются иммунными клетками лимфоцитами для борьбы с чужеродными организмами или вредными соединениями. Так антитела сражаются за нас, когда мы хватаем где-то микробов, так же эти белки воюют, когда человеку переливают кровь неподходящей группы или пересаживают орган, который его организм отторгает. Переливание крови неподходящей группы может привести к летальному исходу, так как произойдет агглютинация – склеивание эритроцитов.

Некоторые растения и животные вырабатывают яды или токсины для того, чтобы защитить себя от нападения и поедания. Поэтому не следует есть незнакомые ягоды, грибы и ловить где-нибудь в тропиках лягушек. Это может закончиться плачевно.

Кроме оборонительной и атакующей функции во благо защиты организма, есть и латающая. При порезе и кровопотере молекулы белка тромбина объединяются для того, чтобы закрыть поврежденный сосуд, а тем временем, тонкие нити белка фибрина переплетаются на поверхности раны, образуя тоненькую пленочку. Если порез был несерьезным, то кровотечение успешно остановлено.

5.Регуляторная функция

Некоторые белки являются гормонами. Они отвечают за регуляцию физиологических процессов организма. Наиболее известным примером белкового гормона является инсулин.

6.Энергетическая функция

Как и углеводы с жирами, белки тоже могут быть расщеплены для получения энергии. Однако, чаще всего, аминокислоты, полученные в результате распада белка, снова используются организмом для построения других белков. Это делает для экономии энергии и биологического материала, ведь в случае повторного использования, не нужно тратиться на синтез новых соединений. При расщеплении 1 г белка высвобождается 17,6 кДж энергии.

 

БЕЛКИ-ПРОСТЫЕ БЕЛКИ БЕЛКИ, ПРОИЗВОДНЫЕ БЕЛКИ

БЕЛКИ

БЕЛКИ

Белки представляют собой класс наиболее важных соединений, которые содержатся в живых организмах. Белки являются основными составляющими нашего тела, такими как мышцы, кожа, волосы. и гвозди.Белок
осуществляет все жизненно важные процессы в организме человека. Белки состоят из большого количества альфа-амино. молекулы кислоты связаны пептидной связью. Таким образом очень длинные цепочки аминокислот составляют от 200 до 60000 аминокислотных единиц относительного молекулярная масса от 17 500 до 6000 000. В целом он колеблется от 34000 Дальтон до 50 000 000 Дальтон. Белки - это обширный класс веществ, практически невероятное разнообразие конструкции и функций.Когда белки при гидролизе разбавленными кислотами получается смесь альфа-аминокислот.

КЛАССИФИКАЦИЯ БЕЛКОВ

Белки Они делятся на три основных класса:
1. Простые протоны
2. Конъюгированные белки
3. Производные белки

ПРОСТОЙ БЕЛКИ

В простые белки состоят только из аминокислотных единиц, соединенных пептидной связью.При гидролизе они дают смесь аминокислот и ничего еще.
Примеры:
АЛЬБУМИНЫ: Яичный альбумин, сывороточный альбумин, лакт-альбумин
ГЛОБУЛИН: Тканевый глобулин, сывороточный глобулин
ГЛИАДИНЫ: пшеничный глиадин, гордеин (ячмень) и т. Д.
Для последняя информация, бесплатные компьютерные курсы и важные заметки посетите: www.citycollegiate.com

СОЕДИНИТЕЛЬНЫЙ БЕЛКИ

Конъюгированные белки состоят из простых белков в сочетании с небелковым субстанция.Небелковое вещество называется простетической группой или кофактор .
Примеры:
хромобелки:
гемоглобин в какой простетической группе находится железо
фосфопротеины:
казеин в молоке: в какой простетической группе находится фосфорная кислота

ПОЛУЧЕНО БЕЛКИ

Эти не являются природными белками и получают из простых белков под действием ферментов и химических агентов.
Примеры: пептоны, пептиды, протеозы и т. Д.

ФУНКЦИИ БЕЛКОВ

Белки являются конструкционными материалами тела животного и помогают в росте животного тело. Белки также участвуют в нервной защите, регуляции обмена веществ, биохимический катализатор и кислородная поддержка. Они создают новые ткани и поддерживают уже присутствующие ткани.

ИСТОЧНИКИ БЕЛКОВ

Мясо (все виды), молоко, яйца, бобовые, фасоль, горох, чечевица, семена, орехи, масло содержащие фрукты и т. д.

КАЛОРИФИЧЕСКИЙ ЗНАЧЕНИЕ БЕЛКОВ

Один грамм белка обеспечивает 4 калории энергии
Для последняя информация, бесплатные компьютерные курсы и важные заметки посетите: www.citycollegiate.com
.

Простой белок - Большая химическая энциклопедия

Структура - функциональные взаимосвязи пролактина между различными видами были опубликованы (17,18). По-видимому, существует только один ген пролактина (19). Хотя его классически относят к категории простых белковых гормонов, пролактин может быть гликозилирован. Присоединение углеводов происходит в Asn-31, где находится консенсусная последовательность гликозилирования Asn-X-Ser. [Pg.176]

Белки могут состоять исключительно из полимерной цепи аминокислот, это простые белки.Нередко с аминокислотной цепью ковалендно связан какой-либо другой химический компонент. Гликопротеины и Hpoproteins содержат компоненты сахара и Hpid соответственно. Порфирины часто связаны с белками, например, с гемоглобином. Белки, связанные с другими химическими компонентами, называются конъюгированными белками. Большинство ферментов представляют собой конъюгированные белки. [Стр.94]

С. Сан, П. Д. Томас, К. А. Дилл. Простой алгоритм сворачивания белка с использованием двоичного кода и ограничений вторичной структуры. Protein Eng 8 769-778, 1995.[Pg.309]

Для относительно простого белка, содержащего всего 50 мономерных единиц, мы имеем ... [Pg.626]

Молекулярный вес. Молекулярная масса люциферазы C. hilgendorfii, о которой сообщалось в прошлом, значительно варьируется в диапазоне от 50 000 до 80 000 (Chase and Langridge, 1960 Shimomura et al., 1961, 1969 Tsuji and Sowinski, 1961 Tsuji et al., 1974), это кажется наиболее вероятным. будет 60,000-70,000. Люцифераза представляет собой кислый белок с изоэлектрической точкой 4,35 (Shimomura et al., 1961).Спектр поглощения люциферазы представляет собой спектр поглощения простого белка без какой-либо простетической группы с пиком при 280 нм. Величина поглощения при 280 нм 0,1% раствора люциферазы составляет примерно 0,96 (Shimomura et al., 1969). [Стр.63]

Всегда предполагалось, что эти простые белки действуют как белки-переносчики электронов. Это также справедливый вывод, если мы примем во внимание, что были выделены различные белки, в которых центр Fe (RS) 4 находится в ассоциации с другими негемовыми, не содержащими железо-сера центрами.В этих белках центр Fe (RS) 4 может служить донором / акцептором электронов для каталитического сайта, как и в других железо-серных белках, где [2Fe-2S], [3Fe-4S] и [4Fe-4S] Предполагается, что кластеры участвуют во внутримолекулярном пути переноса электронов (см. следующие примеры). [Pg.366]

Концентрация общего белка в плазме человека составляет приблизительно 7,0-7,5 г / дл и составляет большую часть твердых веществ плазмы. Белки плазмы на самом деле представляют собой сложную смесь, которая включает не только простые белки, но также конъюгированные белки, такие как гликопротеины и различные типы липопротеинов.Тысячи антител присутствуют в плазме человека, хотя количество любого одного антитела обычно довольно низкое при нормальных обстоятельствах. Относительные размеры и молекулярные массы некоторых из наиболее важных белков плазмы показаны на рисунке 50-1. [Pg.580]

Gutzke, 1999). AOS низших позвоночных, по-видимому, сохраняет способность действовать как система раннего предупреждения при уклонении от врагов и о местонахождении добычи. Это предполагает, что на суше основой для последующей разработки социальных хемосигналов могли быть простые белки, имеющие непосредственное значение для выживания.[Стр.56]

Стратегия очистки CBP концептуально проста. Белки из богатых каротиноидами тканей отделяются в неденатурирующих и относительно водных условиях, когда ожидается, что каротиноиды останутся связанными с CBP. CBP затем обнаруживаются по цвету каротиноидов. [Pg.512]

Белки иногда классифицируют как простые или конъюгированные. Простые белки состоят исключительно из полипептидных цепей без каких-либо дополнительных химических компонентов, которые необходимы для биологической активности.Конъюгированные белки, в дополнение к их полипептидным компонентам, ... [Pg.13]

В дополнение к онлайн-фильтрам и предварительным колонкам, простой этап осаждения белка часто предшествует онлайн-SPE LC / MS / MS для продления срока службы картриджа. Осаждение белков может также уменьшить аналитические помехи и сократить время хроматографического разделения. Поскольку раствор внутреннего стандарта (IS) часто добавляют к образцам плазмы, а центрифугирование используется для удаления возможных частиц перед загрузкой в ​​автоматический пробоотборник, осаждение белков не добавляет трудозатрат к процессу.[Pg.283]

Один или оба недостатка необходимо со временем преодолеть. Очевидно, что более четкое представление о механизме окисления обязательно, прежде чем можно будет добиться значительного прогресса. Как только станет понятно, как этот очень простой белок сворачивается в присутствии органического растворителя, образуя хиральную полость или хиральную поверхность, которая активирует пероксид и / или енон для достижения желаемого асимметричного окисления, тогда реакцию можно распространить на другие субстраты. например а, ненасыщенные сложные эфиры, нитроалкены, возможно (при других условиях) богатые электронами алкены.[Pg.143]

Инсулин представляет собой относительно простой белок, состоящий из 51 аминокислоты, расположенных в виде двух полипептидных цепей, а-цепи и (3-цепи, соединенных дисульфидными связями, последние необходимы для поддержания третичной структуры и биологической активности ( Рис. 67.1). Хотя аминокислота ... [Pg.764]

Nakahara Y, Kimura K, friokuchi H, Yagi T (1979) Электропроводность твердых белков простых белков и цитохрома C3 в виде безводной пленки Chem Lett 8 877-880 ... [Pg.111]

Рисунок 11.10 Экспрессия белка внутри липосом - рабочий план. Схематическая иллюстрация двух критических шагов на пути к минимальной клетке (а) белковая экспрессия простого белка (GFP) или любого другого простого белка и (б) белковая экспрессия ферментов, которые катализируют образование границы везикул. Для простоты рост и разделение изображены как идеальное дублирование.
Белки, состоящие исключительно из аминокислотных единиц, называются простыми белками.Многие белки помимо аминокислот содержат другие химические группы. Эти белки называются конъюгированными белками. Белки, содержащие углеводную единицу, называются гликопротеинами, те, которые содержат нуклеиновую кислоту, называются нуклеопротеинами, а те, которые объединены с липидом, называются липопротеинами. Липопротеины высокой плотности (ЛПВП) и липопротеины низкой плотности (ЛПНП) включаются в тест на холестерин. ЛПНП, которые ... [Pg.232]

Белки с молекулярным весом в миллионы являются основными составляющими всех живых клеток.Простые белки гидролизуются только до аминокислот. Кокъюгированные белки гидролизуются до аминокислот и непептидных веществ, известных как простетические группы. Эти простетические группы включают нуклеиновые кислоты нуциеопротеинов, углеводы гликопротеинов, пигменты (такие как гемин и хиорофилы) хромопротеинов, а также жиры или липиды липопротеинов. [Pg.486]

Каждый тип цитоскелетного компонента состоит из простых белковых субъединиц, которые полимеризуются с образованием филаментов одинаковой толщины.Эти нити не являются постоянными структурами, они подвергаются постоянной разборке ... [Стр.9]

Мы можем рассчитать приблизительное количество аминокислотных остатков в простом белке, не содержащем других ... [Стр.87]

Электрохимический потенциал Через мембрану протоны возвращаются в клетку через мембранный комплекс АТФ-синтазы, очень похожий на таковой митохондрий и хлоропластов. Таким образом, когда 02 ограничено, галобактерии могут использовать свет для дополнения АТФ, синтезируемого путем окислительного фосфорилирования.Галобактерии не развиваются 02, и они не осуществляют фотовосстановление НАДФ +, поэтому их фотопреобразователь намного проще, чем у цианобактерий или растений. Тем не менее, механизм протонной перекачки, используемый этим простым белком, может оказаться прототипом для многих других, более сложных ионных насосов. Бактериородопсин ... [Pg.743]

Еще одна классификация разделяет белки на три основные категории: (а) простые белки (б) конъюгированные белки и (в) производные белки. Последняя классификация охватывает все денатурированные белки и гидролитические продукты распада белков. и больше не считается общим классом... [Pg.1374]

Явно специфические антитела, и особенно моноклональные антитела, могут быть очень полезны при исследовании свойств адсорбированных белков. Специфические антитела были использованы для исследования структуры антигенов в растворе 88). Рассмотрим адсорбцию простого белка с небольшим количеством достаточно четко определенных эпитопов (поверхностные сайты с активностью связывания антител), как на рис. 19. Очевидно, что эпитопы E и A недоступны для связывания, в то время как B, C и D будет стерически доступным.Можно также представить себе конформационное изменение при адсорбции, которое приводит к образованию эпитопа ... [Pg.35]

Простые белки состоят только из аминокислот, связанных вместе пептидной связью, как показано выше. Обратите внимание, что молекула как таковая теперь имеет N-конец (свободная аминогруппа) и C-конец (группа свободной карбоновой кислоты). Пептиды и белки различаются по размеру и взаимодействию молекул - белки имеют пептидный каркас, которого достаточно для протекания межмолекулярных взаимодействий на больших расстояниях »11.Это явление происходит при молекулярной массе 2000-3000 и выше. [Стр.411]


.

Что они из себя представляют и зачем они вам нужны

Основные питательные вещества

Основные питательные вещества - это соединения, которые организм не может или не может вырабатывать в достаточном количестве. По данным Всемирной организации здравоохранения, эти питательные вещества должны поступать из продуктов питания, и они жизненно важны для профилактики заболеваний, роста и хорошего здоровья.

Хотя существует множество основных питательных веществ, их можно разделить на две категории: макроэлементы и микроэлементы.

Макронутриенты потребляются в больших количествах и включают в себя основные строительные блоки вашего рациона - белки, углеводы и жиры, которые обеспечивают ваше тело энергией.

Витамины и минералы являются микронутриентами, и небольшие дозы имеют большое значение. Существует шесть основных групп основных микроэлементов и макроэлементов.

Для протеина наступает момент, и не только в спортивном сообществе. Но вся эта шумиха не зря. Белок необходим для хорошего здоровья.

Белок является строительным материалом для тела, а не только для мышц. Каждая клетка, от кости до кожи и волос, содержит белок.

Поразительные 16 процентов веса среднего человека составляют белки.Белок используется в основном для роста, здоровья и поддержания тела.

Все ваши гормоны, антитела и другие важные вещества состоят из белка. Белок не используется в качестве топлива для тела без необходимости.

Белки состоят из разных аминокислот. Хотя организм может вырабатывать некоторые аминокислоты самостоятельно, есть много незаменимых аминокислот, которые могут быть получены только с пищей. Для правильного функционирования вашего организма вам необходимы различные аминокислоты.

Хорошая новость в том, что вам не нужно есть все аминокислоты сразу.Ваше тело может создавать полноценные белки из продуктов, которые вы едите в течение дня.

Здоровые источники

Хотя мясо, рыба и яйца являются хорошими источниками незаменимых аминокислот, вы также можете получать белок из растительных источников, таких как бобы, соя, орехи и некоторые зерна. Точное количество белка, необходимое вам в день, зависит от множества факторов, в том числе от вашей активности и возраста.

Несмотря на растущую популярность диет с высоким содержанием белка, по данным Mayo Clinic, недостаточно исследований, чтобы доказать, что они более здоровы или могут влиять на потерю веса.

Не позволяйте увлечению низкоуглеводным питанием обмануть вас. Углеводы необходимы для здорового тела. По данным клиники Майо, углеводы питают ваше тело, особенно центральную нервную систему и мозг, и защищают от болезней.

Согласно Рекомендациям по питанию для американцев, углеводы должны составлять от 45 до 65 процентов от общей дневной калорийности.

Здоровые источники

Прежде чем вы потянетесь за белым хлебом или макаронами, имейте в виду, что тип углеводов, которые вы едите, имеет значение.Некоторые углеводы полезнее других. Выбирайте цельнозерновые, бобовые и овощи и фрукты, богатые клетчаткой, вместо очищенных зерен и продуктов с добавлением сахара.

Жиры часто получают плохую репутацию, но недавние исследования показали, что здоровые жиры являются важной частью здорового питания.

Согласно Гарвардской медицинской школе, жир поддерживает многие функции вашего тела, такие как усвоение витаминов и минералов, свертывание крови, строительство клеток и движение мышц.

Да, жир содержит много калорий, но эти калории являются важным источником энергии для вашего тела.

В «Руководстве по питанию для американцев» рекомендуется, чтобы от 20 до 35 процентов ваших ежедневных калорий поступало из жиров, но Всемирная организация здравоохранения рекомендует не превышать 30 процентов калорий.

Включение в рацион полезных жиров может помочь вам сбалансировать уровень сахара в крови, снизить риск сердечных заболеваний и диабета 2 типа, а также улучшить работу мозга. Они также являются мощными противовоспалительными средствами и могут снизить риск артрита, рака и болезни Альцгеймера.

Здоровые источники

Самые известные ненасыщенные жиры - это жирные кислоты омега-3 и омега-6. Ненасыщенные жиры важны для вашего тела, поскольку они обеспечивают незаменимые жирные кислоты, которые организм не может вырабатывать. Вы можете найти эти полезные жиры в орехах, семенах, рыбе и растительных маслах (например, оливковом, авокадо и льняном семени). Кокосовое масло содержит жиры растительного происхождения в виде триглицеридов со средней длиной цепи, которые приносят пользу для здоровья, такие как более быстрое использование органами в качестве топлива и контроль аппетита.

Избегайте трансжиров и ограничьте потребление насыщенных жиров животного происхождения, таких как масло, сыр, красное мясо и мороженое.

Витамины жизненно важны для предотвращения болезней и сохранения здоровья. Эти микроэлементы необходимы организму для поддержания его функций. Существует 13 основных витаминов, которые необходимы организму для правильного функционирования, в том числе витамины A, C, B 6 и D.

Каждый витамин играет важную роль в организме, и недостаток их может вызвать проблемы со здоровьем и болезнь. Многие американцы не получают достаточно многих необходимых витаминов. Витамины необходимы для здорового зрения, кожи и костей.

Витамины могут снизить риск рака легких и простаты, и они являются мощными антиоксидантами. Такие витамины, как витамин С, укрепляют иммунную систему и помогают организму выздороветь.

Здоровые источники

Если вы едите разнообразную, хорошо сбалансированную диету, полную овощей и фруктов, и имеете нормально функционирующий пищеварительный тракт, вам, скорее всего, не нужно принимать витаминные добавки.

Минералы, как и витамины, поддерживают организм. Они необходимы для многих функций организма, включая укрепление костей и зубов, регулирование обмена веществ и поддержание должного уровня гидратации.Некоторые из наиболее распространенных минералов - это кальций, железо и цинк.

Помимо укрепления костей, кальций способствует передаче нервных сигналов, поддержанию нормального кровяного давления, сокращению и расслаблению мышц. Железо поддерживает ваши эритроциты и выработку гормонов, а цинк укрепляет вашу иммунную систему и заживление ран.

Вы можете неделями обходиться без еды, но вы не можете продержаться без воды больше нескольких дней. Вода абсолютно необходима для каждой системы вашего тела.Это также главное, из чего вы сделаны. Около 62 процентов вашего веса составляет вода.

Вода улучшает работу мозга и улучшает настроение. Он действует как амортизатор и смазка в теле. Он также помогает выводить токсины, переносить питательные вещества в клетки, увлажнять организм и предотвращать запоры.

Даже легкое обезвоживание может вызвать усталость и снизить концентрацию внимания и физическую работоспособность.

Здоровые источники

Вам не нужно пить воду, чтобы избежать обезвоживания.Фрукты и овощи также могут быть отличным источником. Перекусите шпинатом или арбузом, чтобы избежать обезвоживания.

Лучший способ узнать, правильно ли вы увлажнены, - это цвет и объем вашей мочи. Если моча нечастая, бледно-желтая или почти прозрачная, вам нужно больше воды.

Разнообразная диета, полная фруктов, овощей, полезных белков и жиров, а также цельнозерновых продуктов - лучший способ получить достаточное количество этих шести основных питательных веществ, а также важной категории фитонутриентов - полезных химических веществ в ярких растениях, которые предотвращают болезни.Эти микронутриенты и макроэлементы жизненно важны для нормального функционирования вашего организма и сохранения здоровья.

.

полимер | Описание, примеры и типы

Полимер , любой из класса природных или синтетических веществ, состоящих из очень больших молекул, называемых макромолекулами, которые кратны более простым химическим единицам, называемым мономерами. Полимеры составляют многие материалы в живых организмах, включая, например, белки, целлюлозу и нуклеиновые кислоты. Более того, они составляют основу таких минералов, как алмаз, кварц и полевой шпат, а также таких искусственных материалов, как бетон, стекло, бумага, пластмассы и каучуки.

химическая структура поливинилхлорида (ПВХ)

Промышленные полимеры синтезируются из простых соединений, соединенных вместе в длинные цепи. Например, поливинилхлорид - это промышленный гомополимер, синтезированный из повторяющихся звеньев винилхлорида.

Encyclopædia Britannica, Inc.

Подробнее по этой теме

life: Производство полимеров

Образование полимеров, длинноцепочечных молекул, состоящих из повторяющихся звеньев мономеров (основных строительных блоков, упомянутых выше), является...

Слово полимер обозначает неопределенное количество мономерных звеньев. Когда количество мономеров очень велико, соединение иногда называют высокополимером. Полимеры не ограничиваются мономерами того же химического состава или молекулярной массы и структуры. Некоторые природные полимеры состоят из одного вида мономера. Однако большинство природных и синтетических полимеров состоит из двух или более различных типов мономеров; такие полимеры известны как сополимеры.

Органические полимеры играют решающую роль в живых существах, обеспечивая основные конструкционные материалы и участвуя в жизненно важных процессах. Например, твердые части всех растений состоят из полимеров. К ним относятся целлюлоза, лигнин и различные смолы. Целлюлоза - это полисахарид, полимер, состоящий из молекул сахара. Лигнин состоит из сложной трехмерной сети полимеров. Смолы для дерева - это полимеры простого углеводорода изопрена. Другой известный изопреновый полимер - это каучук.

натуральный каучук

Латекс, изготовленный из каучукового дерева ( Hevea brasiliensis ) в Малайзии.

© Стюарт Тейлор / Fotolia

Другие важные природные полимеры включают белки, которые являются полимерами аминокислот, и нуклеиновые кислоты, которые представляют собой полимеры нуклеотидов - сложных молекул, состоящих из азотсодержащих оснований, сахаров и фосфорной кислоты. Нуклеиновые кислоты несут генетическую информацию в клетке. Крахмалы, важные источники пищевой энергии, получаемые из растений, представляют собой натуральные полимеры, состоящие из глюкозы.

полинуклеотидная цепь дезоксирибонуклеиновой кислоты (ДНК)

Часть полинуклеотидной цепи дезоксирибонуклеиновой кислоты (ДНК). На вставке показаны соответствующие пентозный сахар и пиримидиновое основание в рибонуклеиновой кислоте (РНК).

Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Многие неорганические полимеры также встречаются в природе, включая алмаз и графит. Оба состоят из углерода.В алмазе атомы углерода связаны в трехмерную сеть, которая придает материалу твердость. В графите, используемом в качестве смазки и в «грифелях» карандашей, атомы углерода соединяются в плоскостях, которые могут скользить друг по другу.

Синтетические полимеры получают с помощью различных типов реакций. Многие простые углеводороды, такие как этилен и пропилен, можно превратить в полимеры, добавляя один мономер за другим к растущей цепи. Полиэтилен, состоящий из повторяющихся мономеров этилена, является аддитивным полимером.Он может иметь до 10 000 мономеров, соединенных в длинные спиральные цепи. Полиэтилен кристаллический, полупрозрачный и термопластичный, то есть он размягчается при нагревании. Он используется для покрытий, упаковки, формованных деталей, а также для изготовления бутылок и контейнеров. Полипропилен также кристаллический и термопластичный, но тверже полиэтилена. Его молекулы могут состоять из 50 000–200 000 мономеров. Этот состав используется в текстильной промышленности и для изготовления лепных изделий.

Другие аддитивные полимеры включают полибутадиен, полиизопрен и полихлоропрен, которые играют важную роль в производстве синтетических каучуков.Некоторые полимеры, такие как полистирол, являются стеклообразными и прозрачными при комнатной температуре, а также термопластичными. Полистирол может быть окрашен в любой оттенок и используется при изготовлении игрушек и других пластиковых предметов.

полистирол

Упаковка из полистирола.

Acdx

Если один атом водорода в этилене заменить на атом хлора, образуется винилхлорид. Он полимеризуется в поливинилхлорид (ПВХ), бесцветный, твердый, прочный термопластический материал, который можно производить в различных формах, включая пену, пленки и волокна.Винилацетат, полученный в результате реакции этилена и уксусной кислоты, полимеризуется с образованием аморфных мягких смол, используемых в качестве покрытий и клеев. Он сополимеризуется с винилхлоридом с образованием большого семейства термопластичных материалов.

Трубы из ПВХ

Трубы из поливинилхлорида (ПВХ).

AdstockRF

Многие важные полимеры содержат атомы кислорода или азота наряду с атомами углерода в основной цепи. К таким макромолекулярным материалам с атомами кислорода относятся полиацетали.Самый простой полиацеталь - это полиформальдегид. Он имеет высокую температуру плавления, кристаллический и устойчив к истиранию и действию растворителей. Ацеталевые смолы больше похожи на металл, чем любые другие пластмассы, и используются при производстве деталей машин, таких как шестерни и подшипники.

Линейный полимер, для которого характерно повторение сложноэфирных групп вдоль основной цепи, называется полиэфиром. Сложные полиэфиры с открытой цепью представляют собой бесцветные кристаллические термопластичные материалы. Те с высоким молекулярным весом (от 10 000 до 15 000 молекул) используются в производстве пленок, формованных изделий и волокон, таких как дакрон.

Полиамиды включают встречающийся в природе белки казеин, содержащийся в молоке, и зеин, содержащийся в кукурузе (кукурузе), из которой изготавливаются пластмассы, волокна, клеи и покрытия. К синтетическим полиамидам относятся карбамидоформальдегидные смолы, которые являются термореактивными. Они используются для изготовления формованных изделий, а также в качестве клеев и покрытий для текстиля и бумаги. Также важны полиамидные смолы, известные как нейлон. Они прочные, устойчивые к нагреванию и истиранию, негорючие и нетоксичные, их можно окрашивать.Наиболее известно их использование в качестве текстильных волокон, но у них есть много других применений.

нейлон

Образование нейлона, полимера.

Encyclopædia Britannica, Inc.

Другое важное семейство синтетических органических полимеров образовано из линейных повторов уретановой группы. Полиуретаны используются в производстве эластомерных волокон, известных как спандекс, и в производстве основ покрытий, а также мягких и жестких пен.

Другой класс полимеров - это смешанные органические и неорганические соединения.Наиболее важными представителями этого семейства полимеров являются силиконы. Их основа состоит из чередующихся атомов кремния и кислорода с органическими группами, присоединенными к каждому из атомов кремния. Силиконы с низкой молекулярной массой - это масла и смазки. Соединения с более высокой молекулярной массой представляют собой универсальные эластичные материалы, которые остаются мягкими и эластичными при очень низких температурах. Они также относительно стабильны при высоких температурах.

герметик

Силиконовый герметик выдается из пистолета для герметика.

Achim Hering

Фторуглеродосодержащие полимеры, известные как фторполимеры, состоят из углеродно-фторных связей, которые обладают высокой стабильностью и делают соединение устойчивым к растворителям. Природа углеродно-фторной связи дополнительно придает фторполимерам антипригарные свойства; это наиболее широко проявляется в тефлоне из политетрафторэтилена (PFTE).

.

Корм ​​| сельское хозяйство | Britannica

Корм ​​, также называемый корм для животных , корм, выращенный или разработанный для домашнего скота и птицы. Современные корма производятся путем тщательного отбора и смешивания ингредиентов для обеспечения высокопитательных диет, которые поддерживают здоровье животных и повышают качество таких конечных продуктов, как мясо, молоко или яйца. Постоянные улучшения рациона животных стали результатом исследований, экспериментов и химического анализа ученых-сельскохозяйственных ученых.

Кормушка с силосом и шнеком

Grant Heilman

Животные в целом нуждаются в тех же питательных веществах, что и люди. Некоторые корма, такие как пастбищные травы, сено и силосные культуры, а также некоторые зерновые культуры, выращиваются специально для животных. Другие корма, такие как жом сахарной свеклы, пивоваренное зерно и ананасовые отруби, являются побочными продуктами, которые остаются после того, как продовольственная культура была обработана для использования человеком. Излишки продовольственных культур, таких как пшеница, другие злаки, фрукты, овощи и корнеплоды, также можно скармливать животным.

История не регистрирует, когда сушеные грубые корма или другие хранящиеся корма были впервые даны животным. Самые ранние записи относятся к кочевым народам, которые со своими стадами и отарами следовали естественным кормам. Когда животных одомашнивали и использовали для работы в растениеводстве, некоторые остатки, несомненно, скармливались им.

Первая научная попытка сравнительной оценки кормов для животных была, вероятно, предпринята в 1809 году немецким агрономом Альбрехтом фон Таером, который разработал «ценность сена» как меру питательной ценности кормов.Таблицы стоимости кормов и потребностей животных в Германии использовались и позже использовались в других странах.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Сохранение зеленых кормов, таких как листья свеклы и кукуруза (кукуруза), путем их укладки в ямы в земле давно практикуется в Северной Европе. Идея изготовления силоса как средства сохранения и использования большего количества кукурузы постепенно развивалась в Европе и была перенесена из Франции в Соединенные Штаты в 1870-х годах.Когда зрелое высушенное растение кукурузы скармливалось скоту зимой, большая часть грубого стебля терялась, но когда его измельчали ​​и силосовали (превращали в силос), все съедалось. В 20-м веке бетонные бункерные силосы для хранения силоса стали обычным явлением во многих сельских районах по всему миру.

Основные питательные вещества и добавки

Основные питательные вещества, необходимые животным для поддержания, роста, воспроизводства и хорошего здоровья, включают углеводы, белок, жиры, минералы, витамины и воду.Энергия, необходимая для роста и активности, поступает в основном из углеводов и жиров. Белок также обеспечивает энергию, особенно если потребление углеводов и жиров недостаточное или если потребление белка превышает потребности организма.

Животным нужен источник энергии для поддержания жизненных процессов в организме и для мышечной деятельности. Когда потребление энергии животным превышает его потребности, излишки откладываются в виде телесного жира, который можно использовать позже в качестве источника энергии, если становится доступным меньше пищи.

Неполовозрелым животным белок также необходим для роста мышц и других частей тела. Поскольку молоко, яйца и шерсть содержат много белка, животным, производящим их, требуется дополнительное количество корма. Всем животным требуется небольшое количество белка для поддержания, то есть для ежедневного восстановления мышц, внутренних органов и других тканей тела.

Белки состоят из более чем 20 различных аминокислот, которые высвобождаются в процессе пищеварения. Животным с одним желудком (с однокамерным желудком), включая людей, обезьян, свиней, домашних птиц, кроликов и норку, ежедневно требуется правильное количество следующих 10 незаменимых аминокислот: аргинин, гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.Помимо этого, птице для роста необходимы глицин и глутаминовая кислота. Цистин может заменить до половины потребности в метионине, а тирозин может заменить до половины потребности в фениаланине. Высококачественный белок, содержащийся в яйцах, молоке, рыбной муке, мясных субпродуктах и ​​соевом жмыхе, содержит высокие концентрации незаменимых аминокислот в надлежащем балансе для их полного использования. Низкокачественный белок, например, в большинстве злаков, включая кукурузу, ячмень и сорго, содержит слишком мало одной или нескольких незаменимых аминокислот.Корма, содержащие некачественные белки, полезны в сочетании с другими кормами, которые восстанавливают баланс незаменимых аминокислот.

Аминокислотный профиль источника белка имеет второстепенное значение для жвачных животных, таких как крупный рогатый скот, овцы, козы и другие животные с четырьмя желудками, поскольку бактерии, которые помогают переваривать пищу в рубце (первом желудке), используют простые соединения азота для построения белков в своих клетках. Далее в пищеварительном тракте животные переваривают бактерии.Таким косвенным способом жвачные животные производят высококачественный белок из пищи, которая изначально могла содержать плохой белок, или из мочевины (соединения азота). Однако очень молодым жвачным животным, таким как телята, ягнята и козлята, нужен белок хорошего качества, пока рубец не разовьется в достаточной степени, чтобы этот бактериальный процесс установился.

Большинство животных получают энергию из углеводов и жиров, которые окисляются в организме. Они выделяют тепло, которое поддерживает температуру тела, дает энергию для роста и мышечной активности и поддерживает жизненно важные функции.Животным требуется гораздо больше энергии (и больше корма) для роста, работы или производства молока, чем для простого содержания.

Простые углеводы, такие как сахар и крахмал, легко усваиваются всеми животными. Сложные углеводы (целлюлоза, гемицеллюлозы), из которых состоят волокнистые стебли растений, разрушаются под действием бактерий и протозойных в рубце крупного рогатого скота и овец или в слепой кишке кроликов и лошадей. Такие сложные углеводы не могут перевариваться людьми или, в какой-либо значительной степени, собаками, кошками, птицами или лабораторными животными.Таким образом, жвачные и некоторые травоядные животные получают гораздо больше энергетических питательных веществ из углеводов растений, чем однокоренные хищники и всеядные животные, для которых волокнистые материалы имеют небольшую энергетическую ценность или совсем не имеют ее.

Жир в кормах имеет высокую питательную ценность, потому что он легко усваивается и дает примерно в два с четверть раза больше энергии, чем крахмал или сахар по весу. Хотя жир обладает высокой питательной ценностью, его можно заменить эквивалентным количеством усвояемых углеводов в корме, за исключением небольшого количества незаменимых жирных кислот.Очень небольшое количество линолевой ненасыщенной жирной кислоты, содержащейся в некоторых жирах, необходимо для роста и здоровья. Корма для животных обычно содержат большое количество этой кислоты, если она не была удалена обработкой.

.

Смотрите также

 
 
© 2020 Спортивный клуб "Канку". Все права защищены.