Окисление жиров в организме человека


Метаболизм жиров

Жиры - это группа природных веществ, присутствующих в клетках каждого растения и животного, особенно в жире наземных животных, морских млекопитающих и рыб, а также в семенах некоторых растений.

Что такое жиры

Жиры представляют собой химические триацилглицерины, то есть сложные эфиры жирных кислот с глицерином трехвалентного спирта. Это могут быть сложные эфиры только одной кислоты или, чаще всего, сложные эфиры двух или трех разных кислот.

Из многих жирных кислот наиболее насыщенными кислотами являются стеариновая и пальмитиновая кислоты, а также ненасыщенные олеиновая, линолевая и линоленовая кислоты. Консистенция жира при температуре окружающей среды зависит от типа отдельных жирных кислот; если жиры содержат больше ненасыщенных кислот, при комнатной температуре они жидкие и называются маслами.

Классификация жиров

Жиры и масла классифицируются по происхождению на животные жиры (молочный жир / масло, свиное сало, говяжий и овечий жир и птичий жир), рыбий жир, растительные масла (подсолнечное, соевое, рапсовое, оливковое, тыквенное, арахисовое, пальмовое) и растительные жиры (кокосовый жир, пальмовый жир, какао-масло).

Из животного сырья жир можно получить в виде готового продукта, просто расплавив и отделив твердый остаток. Переработка растительного масла в сырье намного сложнее и проходит в два этапа: производство неочищенного нерафинированного масла и его переработка. Прессование является очень старым процессом для производства растительных масел, и даже сегодня, без рафинирования, оно используется для некоторого сырья (оливки, тыквенные семечки, в последнее время и семена подсолнечника).

Роль жира в организме

Жиры являются важным компонентом в рационе человека. В современной диете основными источниками жира являются растительные масла, сало (особенно в мясных продуктах), сливочное масло и маргарин. Обильная жирная диета (особенно жир животных, который содержит много холестерина) не нужна, потому что жиры также могут синтезироваться в организме из веществ, полученных в результате расщепления углеводов и белков.

Жировой обмен начинается в кишечнике, где жиры сначала эмульгируются с помощью солей желчных кислот, вырабатываемых в печени. 

Благодаря своему составу (много углерода и водорода, мало кислорода) натуральные жиры являются идеальным запасом метаболического топлива. Их энергетическая ценность в два раза выше, чем у углеводов и белков. В организме они хранятся в жировых запасах разных клеток, особенно в поверхностных жировых тканях, которые также выполняют функцию теплоизолятора. Сохраненные жиры используются в качестве энергетического топлива, особенно во время голодания. Печень использует жиры в качестве основного источника энергии при нормальной работе организма, в то время как мозг вообще не может их использовать. Чтобы обеспечить мозг энергией при недостатке глюкозы, жиры превращаются в кетоновые тела в печени.

Организм человека получает энергию из нескольких различных источников, и только один из них обеспечивает ее более чем в 20 раз больше, чем остальные, а именно, окисление жирных кислот.

Пищеварение в двенадцатиперстной кишке и тонкой кишке.

Окисление жирных кислот представляет собой процесс, в котором один триглицерид измельчается до 16-24 остатков пирувата, поскольку на следующей стадии каждая молекула пирувата входит в цикл Кребса, конечный продукт полного цикла состоит из 14 молекул АТФ.

Окисление жиров и доставка энергии

Условия, при которых организм переходит в режим окисления (говоря простым языком, «сжигания») жира для снабжения энергией, уже накопленной или только извлеченной из пищи, определяются концентрацией сахаров в крови, а также количеством гликогена в организме.

Есть несколько источников энергии, которые способны заряжать организм энергией, и только один источник, который их подключает. Реальная энергия для физического действия производится от разрушения макроэргических связей в молекуле аденозинтрифосфата (АТФ), которая является единственным источником чистой химической энергии, используемой человеческим организмом.

Для синтеза АТФ нужна энергия, которая впоследствии будет потребляться организмом, но сначала нужно откуда-то ее получить. Такими источниками являются жиры, белки, углеводы, нуклеиновые кислоты.

В нормальном состоянии (в состоянии покоя) клетка работает с несколькими видами топлива, чтобы обеспечить свои потребности в энергии. В первые 10 секунд при физическом действии используется количество АТФ, хранящегося в клетке, следующие почти 25 секунд задействуется креатинфосфат.

Если нагрузка продолжается, и топливо заканчивается, тогда приходит следующее - третье топливо - гликоген, сохраненный в ячейке для энергии. Четвертый источник - жир, пятый и шестой - аминокислоты и нуклеиновые кислоты.

При активной деятельности и после того, как запасы углеводов истощаются, нуждающиеся в энергии органы начинают посылать сигналы в ЦНС, а затем в печень, которая начинает метаболизировать собственный гликоген для поддержания уровня глюкозы в крови. Когда определенный процент сахара в крови истощается, механизмы жирового катаболизма доставляют почти в 4 раза больше энергии по сравнению с АК (аминокислоты) и НК (нуклеиновые кислоты). В состоянии стресса / голода или холода жир вовлекается раньше всех и активнее участвует в обмене веществ.


Это суть жирового обмена. Чтобы высвободить энергию, жиры должны транспортироваться в определенную часть клетки. В клетке существует несколько механизмов окисления жирных кислот - альфа, бета и омега, расположенных в нескольких ее частях. Барьером для доставки энергии является преодоление мембран клеточного энергетического центра (митохондрии). Будут ли они поступать напрямую или подвергаться обработке, зависит от длины углеродной цепи жирных кислот.

Как происходит процесс жиросжигания в организме

Сейчас в интернете достаточно много схем и тренировочных программ, нацеленных на снижения жирового компонента и жиросжигание, которые касаются практической стороны этого вопроса. И очень мало информации, которая рассматривает этот вопрос из нутрии с точки зрения физиологии.

Как происходит процесс жиросжигание в организме 

Мы расскажем вам, почему жир нельзя сжечь локально, как запустить окисление жиров и что способствует их накоплению. Начнем с проблем ожирения. Помимо эстетической составляющей ожирение несет конкретные неприятные моменты для нашего организма, а именно:

  •    »Артеросклероз
  •    »Холестериновые бляшки
  •    »Снижение чувствительности к инсулину

Когда мы не правильно питаемся, употребляем большое количество быстрых углеводов, что способствует резкому повышению глюкозы в крови. Это дает сигнал на выработку большого количества инсулина в крови. Инсулин – это проводник, за счет которого наша клетка получает энергию из глюкозы. В результате сидячего образа жизни и употреблении большого количества быстрых углеводов, энергия клетке не нужна в тех объемах в которых она поступает, а все излишки, в том числе глюкоза, успешно отправляются в жировое депо.

Из-за частых и больших выбросов инсулина, наши клетки теряют чувствительность к нему, даже когда энергия клетке нужна, инсулин, условно говоря, не может ее туда доставить, потому что клетка к нему не чувствительна. И они, погуляв по крови успешно отправляются в жировое депо, усугубляя наше положение. Мы становимся жирнее, круглее, наш «внутренний мир становится богаче».

Какие бывают причины ожирения?

  •    »Снижение центра регулирующего аппетит. В нашем организме есть центры, которые регулируют наш аппетит за счет определенных гормонов.
  •    »Вторая причина – нарушение сна
  •    »Третья – недостаток двигательной активности

Как похудеть в таком случае?

Все очень просто. Необходимо тратить энергии больше чем мы ее потребляем и на наш взгляд это можно сделать несколькими способами.

  •    »Ничего не меняя снизить количество потребляемых калорий
  •    »Повысить уровень своей двигательной активности, записавшись в спортивную секцию или тренажерный зал
  •    »Меньше есть и больше двигаться – самый эффективный способ

Нормализованное питание плюс тренировки ровняется ускоренному процессу жиросжигания. Еще как бонус вы получите избавление от мышечной атрофированности и ряд приятных моментов присущих нормальной двигательной активности. Ничего сверхчеловеческого делать мы не будем, для снижения жирового компонента это и не нужно.

Итак, мы нормализовали питание, начали заниматься по адекватной схеме тренировок и после силовой тренировки добавили, к примеру, получасовое кардио либо ходьбу в быстром темпе. Что же происходит в это время в нашем организме?

Стресс-реакцию при силовых тренировках. Эта реакция мобилизирует наши энергетические ресурсы под воздействием катаболических гормонов и запускает процесс адаптации. К слову всем знакомая фраза «делай базу» несет на себе именно смысл в том, что бы достичь стресс-реак

Метаболизм жиров (липидный обмен) в организме человека: этапы и биохимия

Мы продолжаем рассматривать тему обменных процессов. Пора перейти к более тонкой настройке питания атлета. Понимание всех нюансов метаболизма – ключ к спортивным достижениям. Тонкая настройка позволит вам отойти от классических диетических формул и подстроить питание индивидуально под сосбвенные потребности, достигая максимально быстрых и стойких результатов в тренировках и соревнованиях. Итак, изучим самый спорный аспект современной диетологии – метаболизм жиров.

Общие сведения

Научный факт: жиры усваиваются и расщепляются в нашем организме весьма избирательно. Так, в пищеварительном тракте человека просто нет ферментов, способных переварить транс-жиры. Инфильтрат печени просто стремится вывести их из организма кратчайшим путем. Пожалуй, каждый знает, что, если съесть много жирной пищи, это вызывает тошноту.

Постоянный избыток жиров ведет к таким последствиям, как:

  • диарея;
  • несварение желудка;
  • панкреатит;
  • высыпания на лице;
  • апатия, слабость и усталость;
  • так называемое “жировое похмелье”.

С другой стороны, баланс жирных кислот в организме крайне важен для достижения спортивных результатов – в частности в плане повышения выносливости и силы. В процессе метаболизма липидов происходит регулирование всех систем организма, включая гормональные и генетические.

Рассмотрим подробнее, какие жиры полезны для нашего организма, и как их употреблять, чтобы они помогали достигать желаемого результата.

Виды жиров

Основные виды жирных кислот, поступающие в наш организм:

  • простые;
  • сложные;
  • произвольные.

По другой классификации жиры делятся на мононенасыщенные и полиненасыщенные (например, тут подробно об омега-3) жирные кислоты. Это полезные для человека жиры. Есть ещё насыщенные жирные кислоты, а также транс-жиры: это вредные соединения, которые препятствуют усвоению незаменимых жирных кислот, затрудняют транспорт аминокислот, стимулируют катаболические процессы. Другими словами, такие жиры не нужны ни спортсменам, ни обычным людям.

Простые

Для начала рассмотрим самые опасные но, при этом, самые часто встречающиеся жиры, которые попадают в наш организм – это простые жирные кислоты.

В чем их особенность: они распадаются под воздействием любой внешней кислоты, включая желудочный сок, на этиловый спирт и ненасыщенные жирные кислоты.

Кроме того, именно эти жиры становятся источником дешевой энергии в организме. Они образуются как результат превращения углеводов в печени. Этот процесс развивается по двум направлениям – либо в сторону синтезирования гликогена, либо в сторону нарастания жировой ткани. Такая ткань практически целиком состоят из окисленной глюкозы, чтобы в критической ситуации организм мог быстро синтезировать из неё энергию.

Простые жиры наиболее опасны для спортсмена:

  1. Простая структура жиров практически не нагружает ЖКТ и гормональную систему. В результате человек с легкостью получает избыточную нагрузку по калорийности, что в приводит к набору лишнего веса.
  2. При их распаде выделяется отравляющий организм спирт, который с трудом метаболизируется и ведет к ухудшению общего самочувствия.
  3. Они транспортируются без помощи дополнительных транспортировочных белков, а значит, могут прилипать к стенкам сосудов, что чревато образованием холестериновых бляшек.

Подробнее о продуктах, которые метаболизириуются в простые жиры, читайте в разделе Таблица продуктов.

Сложные

Сложные жиры животного происхождения при правильном питании входят в составы мышечной ткани. В отличие от своих предшественников, это многомолекулярные соединения.

Перечислим основные особенности сложных жиров в плане влияния на организм спортсмена:

  • Сложные жиры практически не метаболизируются без помощи свободных транспортировочных белков.
  • При правильном соблюдении жирового баланса в организме сложные жиры метаболизируются с выделением полезного холестерина.
  • Они практически не откладываются в виде холестериновых бляшек на стенках сосудов.
  • Со сложными жирами невозможно получить переизбыток калорийности – если сложные жиры метаболизируются в организме без открытия инсулином транспортировочного депо, которое обуславливает понижение глюкозы в крови.
  • Сложные жиры нагружают клетки печени, что может привести к дисбалансу кишечника и к дисбактериозу.
  • Процесс расщепления сложных жиров приводит к увеличению кислотности, что негативно сказывается на общем состоянии ЖКТ и чревато развитием гастрита и язвенной болезни.

В то же время жирные кислоты многомолекулярной структуры содержат радикалы, связанные липидными связями, а значит, они могут денатурировать до состояния свободных радикалов под воздействием температуры. В умеренном количестве сложные жиры полезны для атлета, но не стоит подвергать их термической обработке. В этом случае они метаболизируются в простые жиры с выделением огромного количества свободных радикалов (потенциальных канцерогенов).

Произвольные

Произвольные жиры – это жиры с гибридной структурой. Для атлета это наиболее полезные жиры.

В большинстве случаев организм способен самостоятельно превращать сложные жиры в произвольные. Однако в процессе липидного изменения формулы выделяются спирты и свободные радикалы.

Употребление произвольных жиров:

  • снижает вероятность образования свободных радикалов;
  • уменьшает вероятность появления холестериновых бляшек;
  • положительно влияет на синтез полезных гормонов;
  • практически не нагружает пищеварительную систему;
  • не ведет к переизбытку калорийности;
  • не вызывают притока дополнительной кислоты.

Несмотря на множество полезных свойств, полиненасыщенные кислоты (по сути это и есть произвольные жиры) легко метаболизируются в простые жиры, а сложные структуры, имеющие недостаток молекул – легко метаболизируются в свободные радикалы, получая завершенную структуру из молекул глюкозы.

А теперь перейдем к тому, что из всего курса биохимии нужно знать атлету об обмене липидов в организме:

Пункт 1. Классическое питание, не приспособленное под спортивные нужды, содержит множество простых молекул жирных кислот. Это плохо. Вывод: радикально уменьшать потребление жирных кислот и перестать жарить на масле.

Пункт 2. Под воздействием термической обработки полиненасыщенные кислоты распадаются до простых жиров. Вывод: заменить жареную пищу на печеную. Основным источником жиров должны стать растительные масла – заправляйте ими салаты.

Пункт 3. Не употребляйте жирные кислоты вместе с углеводами. Под воздействием инсулина жиры практически без воздействия транспортных белков в своей завершенной структуре попадают в липидное депо. В дальнейшем даже при жиросжигательных процессах они будут выделять этиловый спирт, а это – дополнительный удар по метаболизму.

А теперь о пользе жиров:

  • Жиры нужно употреблять обязательно, так как они смазывают суставы и связки.
  • В процессе обмена жиров происходит синтез основных гормонов.
  • Для создания положительного анаболического фона нужно поддерживать в организме баланс полиненасыщенных омега 3, омега 6 и омега 9 жиров.

Для достижения правильного баланса нужно ограничить общее потребление калорий из жиров до 20% по отношению к общему плану питания. При этом важно принимать их в соединении с белковыми продуктами, а не с углеводными. В этом случае транспортировочные аминокислоты, которые будут синтезироваться в кислотной среде желудочного сока, смогут практически сразу метаболизировать излишек жиров, выводя его из кровеносной системы и переваривая до конечного продукта жизнедеятельности организма.

Таблица продуктов

ПродуктОмега-3Омега-6Омега- 3 : Омега-6
Шпинат (в готовом виде)0.1Остаточные моменты, меньше милиграмма
Шпинат0.1Остаточные моменты, меньше милиграмма
Форель свежая1.0580.1141 : 0.11
Устрицы0.8400.0411 : 0.04
Тунец свежий0.144 — 1.5540.010 – 0.0581 : 0.005 – 1 : 0.40
Треска тихоокеанская0.1110.0081 : 0.04
Скумбрия тихоокеанская свежая1.5140.1151 : 0.08
Скумбрия атлантическая свежая1.5800.11111 : 0. 08
Сельдь тихоокеанская свежая1.4180.11111 : 0.08
Свекольная ботва. припущеннаяОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма
Сардины атлантические1.4800.1101 : 0.08
Рыба-меч0.8150.0401 : 0.04
Рапсовое жидкий жир в виде масла14.50411.1481 : 1.8
Пальмовое жидкий жир в виде масла11.1000.1001 : 45
Палтус свежий0.55110.0481 : 0.05
Оливковое жидкий жир в виде масла11.8540.8511 : 14
Атлантический угорь свежий0.5540.11151 : 0.40
Атлантический гребешок0.41150.0041 : 0.01
Морские моллюски0.41150.0411 : 0.08
Жидкий жир в виде масла макадамии1.4000Нет Омега-3
Жидкий жир в виде масла льняного семени11.80154.4001 : 0.1
Жидкий жир в виде масла лесного ореха10.1010Нет Омега-3
Жидкий жир в виде масла авокадо11.5410.11581 : 14
Лосось консервированный1.4140.1511 : 0.11
Лосось атлантический. выращенный на ферме1.5050.11811 : 0.411
Лосось атлантический атлантический1.5850.1811 : 0.05
Листовые элементы репы. припущенныеОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма
Листовые элементы одуванчика. припущенные0.1Остаточные моменты, меньше милиграмма
Листовые элементы мангольда в тушёном виде0.0Остаточные моменты, меньше милиграмма
Листовые элементы красного салата в свежем видеОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма
Листовые элементы желтого салата в свежем видеОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма
Листовые элементы желтого салата в свежем видеОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма
Листовая капуста коллард. тушеная0.10.1
Кубанское подсолнечное жидкий жир в виде масла (содержание олеиновой кислоты 80% и выше)4.5050.11111 : 111
Креветки0.5010.0181 : 0.05
Кокосовое жидкий жир в виде масла1.8000Нет Омега-3
Кейл. припущенный0.10.1
Камбала0.5540.0081 : 0.1
Какао жидкий жир в виде масла1.8000.1001 : 18
Икра чёрная и красная5.88110.0811 : 0.01
Горчичные листовые элементы. припущенныеОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма
Бостонский салат в свежем видеОстаточные моменты, меньше милиграммаОстаточные моменты, меньше милиграмма

Итог

Итак, рекомендация всех времён и народов “есть меньше жирного” верна лишь отчасти. Некоторые жирные кислоты просто незаменимы и должны обязательно входить в рацион спортсмена. Чтобы правильно понять, как атлету употреблять жиры, приведём такую историю:

Молодой атлет подходит к тренеру и спрашивает: как правильно есть жиры? Тренер отвечает: не ешь жиры. После этого, атлет понимает, что жиры вредны для организма и учится планировать свое питание без липидов. Затем он находит лазейки, при которых использование липидов оправдано. Он учится составлять идеальный план питания с вариативными жирами. И когда он сам становится тренером, а к нему подходит молодой атлет и спрашивает, как правильно есть жиры, он тоже отвечает: не ешь жиры.

Оцените материал

Эксперт проекта. диагностика, лечение, первичная, вторичная профилактика заболеваний почек, суставов, сердечно-сосудистой системы; дифференциальная диагностика заболеваний различных органов и систем; рекомендации по диетическому питанию, физическим нагрузкам, лечебной физкультуре, подбор индивидуальной схемы питания.

Редакция cross.expert

Основные закономерности метаболических процессов в организме человека. Часть 2.

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.

Единственной формой углеводов, которая может всасываться в кишечнике, являются моносахара. Они всасываются главным образом в тонкой кишке, током крови переносятся в печень и к тканям. Основная часть поступающей с пищей глюкозы (около 70%) окисляется в тканях до воды и углекислого газа, около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген. Гликоген печени представляет собой основной резерв углеводов в организме, достигая по своей массе у взрослого человека 150—200 г. Синтез гликогена происходит достаточно быстро, что, наряду с быстрой мобилизацией гликогена и поступлением глюкозы в кровь в процессе гликогенолиза, является одним из механизмов поддержания гликемии в константных пределах. Помимо печени в качестве депо гликогена выступают также мышцы. Однако запас гликогена в мышечной массе по отношению к всему гликогену организма составляет всего 1 - 2%. В мышцах под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ресинтез гликогена.

При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Собственно белки (протеины и протеиды), высокомолекулярные соединения, построенные из мономеров - аминокислот, занимают ведущее место среди органических элементов организма, составляя более 50 % сухой массы клетки. Как известно, белки в организме выполняют ряд важнейших биологических функций, а именно:

- пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

- ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

- транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

- защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

- регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

- двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

- энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки ферментативно расщепляются ферментами до аминокислот и абсорбируются в тонкой кишке. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30 - 50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) - активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь. Перенос через щеточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Na+-зависимых механизмов симпорта, подобно переносу глюкозы.

Из аминокислот и простейших пептидов клетки тканей синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, то есть использоваться для синтеза этих соединений. В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и параллельно с этим — синтез белков. Катаболизм большинства аминокислот начинается с отщепления α-аминогруппы результате реакций трансаминирования и дезаминирования. Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных - глутамат, аланин, аспартат и соответствующие им кетокислоты - α-кетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат. Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование - заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование - первая стадия дезаминирования большинства аминокислот, то есть начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется. В свою очередь дезаминирование аминокислот - реакция отщепления α-аминогруппы от аминокислоты, в результате чего образуется соответствующая α-кетокислота (безазотистый остаток) и выделяется молекула аммиака. Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение - мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования.

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей). Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак. Преобладание в организме в данный момент времени синтеза или распада белка отражается понятием азотистого баланса - разностью между количеством азота, содержащегося в пище человека, и его уровнем в выделениях. Азотистым равновесием называют состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека, если минимальное количество белков в пище соответствует 30-50 г/сут. Оптимальное количество поступления белка с пищей при средней физической нагрузке составляет около 100-120 г/сут. При положительном азотистом балансе количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной массы, при заживлении обширных ран и при разрешении патологического процесса, связанного с выраженными системными нарушениями. Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или эссенциальными. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме (заменимые аминокислоты), а 8 не синтезируются (незаменимые аминокислоты) . К незаменимым аминоксилотам относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин. Две аминокислоты - аргинин и гистидин - у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными (табл. 1. 1. ). Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

Валин

Лейцин

Изолейцин

Треонин

Метионин

Фенилаланин

Триптофан

Лизин

2. Частично заменимые

Гистидин

Аргинин

3. Условно заменимые

Цистеин

Тирозин

4. Заменимые

Аланин

Аспарагиновая кислота

Аспарагин

Глутаминовая кислота

Глутамин

Пролин

Глицин

Серин

Жиры (липиды) по своей химической структуре представляют собой триглицериды - сложные эфиры глицерина и жирных кислот (табл. 1. 2). Изначально эти соединения были объединены в одну химическую группу по общему признаку растворимости: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол). Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин). Основная масса липидов представлена в организме человека нейтральными жирами - триглицеридами олеиновой, пальмитиновой, стеариновой, линолевой и линоленовой жирных кислот.

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

Эфиры глицерина и высших жирных кислот. Химическое название - ацилглицерины. Преобладают триацилглицерины.

3. Минорные липиды.

Свободные жирные кислоты, жирорастворимые витамины, биологически активные вещества липидной природы - простагландины и др.

4. Стероиды.

В основе строения - полициклическая структура циклопентанпергидрофенантрен-стеран.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Отличительная особенность - остаток фосфорной кислоты в составе молекулы.

Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса - насыщенные и ненасыщенные. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота (или, иначе, количеством двойных связей С=С). Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются β-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. Как известно высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, атеросклероза. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными – ПНЖК. Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов – эйкозаноидов. Двумя основными группами ПНЖК являются кислоты семейств ω-6 и ω-3. Жирные кислоты ω-6 содержатся практически во всех растительных маслах и орехах. ω-3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником ω-3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК ω - 6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства - арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека и служит субстратом для синтеза простагландинов и лейкотриенов.

Источниками жира в организме являются экзогенный жир, поступающий с пищей, и эндогенный жир, синтезируемый в печени из углеводов. Жир, всасывающийся из кишечника, поступает преимущественно в лимфу и в меньшем количестве — непосредственно в кровь. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. В жировой ткани жир, находящийся в клетке в виде включений, легко выявляется при микроскопическом и гистохимическом исследованиях. Жировые вакуоли в клетках — это резервный жир, используемый для обеспечения прежде всего энергетических потребностей клетки. Больше всего запасного жира содержится в жировой ткани, а также в некоторых органах, например в печени и мышцах. Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности; количество же протоплазматического жира является устойчивым и постоянным. В жировой ткани нейтральный жир депонируется виде триглицеридов. Сложные липиды - фосфолипиды и гликолипиды - входят в состав всех клеток, но в большей степени в состав клеток нервной ткани. Общее количество жира в организме человека колеблется в широких пределах и в среднем составляет 10—20% от массы тела, а в случае патологического ожирения может достигать 50%. Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г. У человека состав и свойства жира относительно постоянны. При употреблении пищи, содержащей даже небольшое количество жира, в теле человека жир все же откладывается в депо. При этом эндогенный жир имеет некоторые видовые особенности, однако видовая специфичность жиров выражена несравнимо меньше, чем видовая специфичность белков.

Основная биологическая роль жиров - обеспечение пластического и энергетического обмена в организме. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран, в значительной мере определяя их свойства. Фосфатиды и стерины входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы. Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови и местом синтеза эндогенного холестерина. В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется его транспорт. У взрослых людей 67—70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% - в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Давно доказано, что именно липопротеиды определяют уровень холестерина и динамику его обмена.

Энергетическая роль жиров определяется их максимальной среди всех биологических молекул энергоемкостью, более чем в два раза превышающую таковую углеводов или белков. При окислении 1 г жира выделяется 37, 7 кДж (9, 0 ккал) энергии. В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород - группы -CHOH-; у жира имеются длинные углеводородные радикалы, в которых преобладают группы -Ch3- - в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ. Еще одним преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность - он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме - примерно 400 г; при голодании этого количества не хватает даже на одни сутки.

Катаболизм жира включает в себя три этапа: 1) гидролиз жира до глицерина и жирных кислот (липолиз) ; 2) трансформация глицерина с последующим вступлением продуктов в гексозобифосфатный путь, а также окисление жирных кислот до ацетил-КоА; 3) вступление вышеуказанных продуктов в цикл трикарбоновых кислот. Кроме указанных этапов к катаболизму жиров относят также окисление кетоновых тел и перекисное окисление липидов. Обмен полученного в результате липолиза глицерина может осуществляться несколькими путями. Значительная часть образовавшегося при гидролизе липидов глицерина используется для ресинтеза триглицеридов. Второй путь обмена глицерина - включение продукта его окисления в гликолиз или в глюконеогенез. Окисление жирных кислот осуществляется различными путями, наиболее значимым из них является β-окисление. В ходе β-окисления последовательно происходит активация жирной кислоты на мембране митохондрии и ее связывание с молекулой карнитина, прохождение комплекса нв внутреннюю поверхность мембраны митохондрии, внутримитохондриальное окисление жирной кислоты с образованием ацетил-КоА и АТФ.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. В норме у человека 25—30% углеводов пищи превращается в жиры. Превращение белка в жирные кислоты происходит, вероятнее всего, также через образование углеводов. С другой стороны и нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Тем не менее жиры необходимы для нормальной жизнедеятельности. Известно, что длительное исключение жиров из пищевого рациона может явиться причиной возникновения целого ряда тяжелых метаболических нарушений. Отчасти это связано с отсутствием поступления в организм жирорастворимых витаминов (A, D, E, K). Но основная причина метаболических нарушений кроется в возникновении в организме дефицита незаменимых жирных кислот. Некоторые ненасыщенные жирные кислоты (с числом двойных связей более 1), например линолевая, линоленовая и арахидоновая, в организме человека и некоторых животных не образуются из других жирных кислот и поэтому являются незаменимыми. Особенно остро реагирует организм на дефицит незаменимой линолевой кислоты СН3- (СН2) 4 - СН = СН - СН2 - СН = СН - (СН2) 7 - СООН. Возможно это связано с тем, что эта ненасыщенная жирная кислота в организме человека служит предшественником арахидоновой кислоты, которая в свою очередь необходима для синтеза универсальных биорегуляторов - простагландинов. Основными пищевыми источниками полиненасыщенных жирных кислот, в том числе линолевой, являются растительные масла.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

Статья добавлена 31 мая 2016 г.

3. Обмен органических соединений (белков, жиров и углеводов)

Белковый обмен

Белковый обмен — использование и преобразование аминокислот белков в организме человека.

При окислении \(1\) г белка выделяется \(17,2\) кДж (\(4,1\) ккал) энергии.

Но организм редко использует большое количество белков для покрытия своих энергетических затрат, так как белки нужны для выполнения других функций (основная функция — строительная). Организму человека нужны не белки пищи, сами по себе, а аминокислоты, из которых они состоят.

В процессе пищеварения белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к клеткам, в которых происходит синтез новых собственных белков, свойственных человеку.

 

 

Уровень содержания аминокислот в крови регулирует печень. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени из образовавшегося аммиака синтезируется мочевина (которая затем выводится вместе с водой почками в составе мочи и частично кожей), а углекислый газ выдыхается через лёгкие.

 

 

Остатки аминокислот используются как энергетический материал (преобразуются в глюкозу, избыток которой превращается в гликоген).

Углеводный обмен

Углеводный обмен — совокупность процессов преобразования и использования углеводов.

Углеводы являются основным источником энергии в организме. При окислении \(1\) г углеводов (глюкозы) выделяется \(17,2\) кДж (\(4,1\) ккал) энергии.

Углеводы поступают в организм человека в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Все эти вещества распадаются в процессе пищеварения до простого сахара глюкозы, всасываются ворсинками тонкого кишечника и попадают в кровь.

 

 

Глюкоза необходима для нормальной работы мозга. Снижение содержания глюкозы в плазме крови с \(0,1\) до \(0,05\) % приводит к быстрой потере сознания, судорогам и гибели.

 

Основная часть глюкозы окисляется в организме до углекислого газа и воды, которые выводятся из организма через почки (вода) и лёгкие (углекислый газ).

Часть глюкозы превращается в полисахарид гликоген и откладывается в печени (может откладываться до \(300\) г гликогена) и мышцах (гликоген является основным поставщиком энергии для мышечного сокращения).

Уровень глюкозы в крови постоянный (\(0,10\)–\(0,15\) %) и регулируется гормонами щитовидной железы, в том числе инсулином. При недостатке инсулина уровень глюкозы в крови повышается, что ведёт к тяжёлому заболеванию — сахарному диабету.

Инсулин также тормозит распад гликогена и способствует повышению его содержания в печени.

Другой гормон поджелудочной железы — глюкагон — способствует превращению гликогена в глюкозу, тем самым повышая её содержание в крови (т. е. оказывает действие, противоположное инсулину).

 

 

При большом количестве углеводов в пище их избыток превращается в жиры и откладывается в организме человека.

 

\(1\) г углеводов содержит значительно меньше энергии, чем \(1\) г жиров. Но зато углеводы можно окислить быстро и быстро получить энергию.

Обмен жиров

Обмен жиров — совокупность процессов преобразования и использования жиров (липидов).

 

При распаде \(1\) г жира выделяется \(38,9\) кДж (\(9,3\) ккал) энергии (в \(2\) раза больше, чем при расщеплении \(1\) г белков или углеводов).

Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Жирные кислоты под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи, всасываются в лимфу в ворсинках тонкого кишечника. Далее с током лимфы липиды попадают в кровоток, а затем в клетки. 

 

 

Как и углеводы, жиры распадаются до углекислого газа и воды и выводятся тем же путём.

 

 

В гуморальной регуляции уровня жиров участвуют железы внутренней секреции и их гормоны.

 

Значение жиров

  • Значительная часть энергетических потребностей печени, мышц, почек (но не мозга!) покрывается за счёт окисления жиров.
  • Липиды являются структурными элементами клеточных мембран, входят в состав медиаторов, гормонов, образуют подкожные жировые отложения и сальники.
  • Откладываясь в запас в соединительнотканных оболочках, жиры препятствуют смещению и механическим повреждениям органов.
  • Подкожный жир плохо проводит тепло, что способствует сохранению постоянной температуры тела.

Потребность в жирах определяется энергетическими потребностями организма в целом и составляет в среднем \(80\)–\(100\) г в сутки. Избыток жира откладывается в подкожной жировой клетчатке, в тканях некоторых органов (например печени), а также и на стенках кровеносных сосудов.

 

 

Если в организме недостаёт одних веществ, то они могут образовываться из других. Белки могут превращаться в жиры и углеводы, а некоторые углеводы — в жиры. В свою очередь жиры могут стать источником углеводов, а недостаток углеводов может пополняться за счёт жиров и белков. Но ни жиры, ни углеводы не могут превращаться в белки.

 

 

Подсчитано, что взрослому человеку для нормальной жизнедеятельности необходимо не менее \(1500\)–\(1700\) ккал в сутки. Из этого количества энергии на собственные нужды организма уходит \(15\)–\(35\) %, а остальное затрачивается на выработку тепла и поддержание температуры тела.

Липолиз и окисление жиров. !! !! | Полезности | Do4a.com

http://img.do4a.net/uploads/images/00/20/15/2011/11/12/7f9e1a.jpg

Липолиз (или деградация жиров) — это процесс превращения жиров в жирные кислоты и глицирин. Запускается благодаря особым ферментам, липазам, которые выделяются после 30-40 минут активной нагрузки.

Жирные кислоты, в свою очередь, переносятся в плазме крови (простые) или вместе с альбумином (сложные) в ткани, где либо опять депонируются, либо окисляются.

Наибольшее количество жирных кислот окисляется благодаря процессу β-окисление. Сначала жирные кислоты активируются при помощи кофермента А (содержится в витамине В5), затем переносятся с помощью карнитинового челнока (L-карнитин) в митохондрии.

В митохондриях жирные кислоты + кофермент А окисляются до ацетил-КоА, с высвобождением СО2 и как вы думаете чего? Все той же АТФ. Ацетил-КоА окисляется несколько раз по кругу, пока полностью не сгорит.

В основном, в ходе липолиза и β-окисления используются витамины группы B или сходные с ними вещества. Чтобы этот процесс протекал лучше, необходимо потреблять достаточное количество продуктов, содержащих витамины группы В. Помимо продуктов и витаминно-мениральных комплексов большое количествно витаминов группы В содержится в биологически активной добавке «Пивные дрожжи».

Так же стоит обратить внимание на такую биологически активную добавку, как Липоевая кислота, которая непосредственно участвует процессе окисления жиров (как кофермент). Думаю логично предположить, что её прием за час до аэробной тренировки будет эффективным.

Следует добавить, что инсулин тормозит процесс липолиза, т.е. если вы после пробежки решите закрыть углеводное окно, выделится инсулин, который сведет все ваши труды на нет. Именно поэтому рекомендуется не есть 2 часа после аэробной тренировки.

Липолиз, сам по себе, протекает ещё порядка 12-и часов (в идеальных условиях), поэтому на протяжении этого времени следует очень ответственно подойти к выбору продуктов в пользу еды с низким гликемическим индексом, дабы не поднимать уровень инсулина. Это развеивает миф о том, что аэробные тренировки не имеют послетренировочного действия в отличии от анаэробных.

Липолиз является важнейшим энергетическим процессом в клетке, который обеспечивает синтез самого большого количества АТФ. Например, при окислении одной молекулы пальмитата, образуется 131 молекула АТФ (против 38 у углеводов), две из которых используются для активации пальмитата. Это даже эффективнее, чем сжигать углеводы.

Напомню так же, что аэробные нагрузки увеличивают количество митохондрий и их размер, что существенно влияет на способность организма вырабатывать энергию и сжигать жиры. Т.е. чем чаще вы бегаете, тем эффективнее будет каждая следующая пробежка.

Для тех, кому захочется MOAR — Наглядная Биохимия, читайте книжки. ;)

 

Гормоны, масса тела и упражнения

Обзор

Ваш метаболизм включает в себя набор процессов, которые все живые существа используют для поддержания своего тела. Эти процессы включают как анаболизм, так и катаболизм. Оба помогают организовать молекулы, высвобождая и улавливая энергию, чтобы тело работало сильнее. Эти фазы метаболизма происходят одновременно.

Анаболизм сосредоточен вокруг роста и строительства - организации молекул. В этом процессе маленькие простые молекулы превращаются в более крупные и сложные.Примером анаболизма является глюконеогенез. Это когда печень и почки производят глюкозу из неуглеводных источников.

Катаболизм - это то, что происходит, когда вы перевариваете пищу, и молекулы распадаются в организме для использования в качестве энергии. Большие сложные молекулы в организме разбиваются на более мелкие и простые. Пример катаболизма - гликолиз. Этот процесс почти противоположен глюконеогенезу.

Понимание анаболизма и катаболизма может помочь вам тренироваться более эффективно, чтобы сбросить жир и нарастить мышцы.Отдых также является частью уравнения. Ваш метаболизм работает, даже когда вы спите.

Ваши гормоны играют важную роль в этих процессах. Различные гормоны в организме связаны с анаболизмом и катаболизмом.

Анаболизм включает гормоны:

  • эстроген
  • инсулин
  • гормон роста
  • тестостерон

Катаболизм включает гормоны:

  • адреналин
  • цитозолкинс
  • кортизол
  • нарушение гормонов, например, заболевания щитовидной железы, также может повлиять на эти процессы и общий метаболизм.Например, небольшое исследование бодибилдеров изучило их гормональный анаболико-катаболический баланс, когда они готовились к соревнованиям. Некоторые из мужчин продолжали тренироваться и питаться как обычно, в то время как другие были ограничены в энергии, чтобы уменьшить жировые отложения.

    В группе с ограничением энергии наблюдалось значительное снижение жировой и мышечной массы по сравнению с контрольной группой. Их уровни инсулина и гормона роста также снизились на протяжении всего исследования. Уровень тестостерона также снизился за 11-5 недель до соревнований.Другими словами, мужские «анаболические пути» были нарушены даже у тех, кто употреблял много белка.

    Исследователи пришли к выводу, что культуристам, возможно, потребуется использовать другие стратегии питания, чтобы предотвратить эффект катаболического распада перед соревнованиями.

    Поскольку анаболизм и катаболизм являются частями вашего метаболизма, эти процессы влияют на вес вашего тела. Помните: когда вы находитесь в анаболическом состоянии, вы наращиваете и поддерживаете мышечную массу. Когда вы находитесь в катаболическом состоянии, вы теряете общую массу, как жир, так и мышцы.

    Вы можете управлять своей массой тела, понимая эти процессы и свой общий метаболизм. И анаболический, и катаболический процессы со временем приводят к потере жира. Однако что касается вашего веса на весах для ванной в качестве ориентира, все может стать немного сложнее.

    • Если вы много занимаетесь анаболическими тренировками, вы будете сбрасывать жир и поддерживать или даже наращивать мышцы. Мышцы более плотные, чем жир, поэтому ваш вес и индекс массы тела могут оставаться выше, несмотря на более стройное телосложение.
    • Катаболические тренировки, с другой стороны, могут помочь вам сбросить лишние килограммы, отработав как жир, так и мышцы. Вы будете меньше весить, но при этом у вас будет гораздо меньше критической мышечной массы.

    Вы можете думать об этих процессах как об уравнении, чтобы предсказать, можете ли вы сбросить или набрать вес.

    Возьмите катаболизм (сколько энергии вырабатывает ваше тело) и вычтите анаболизм (сколько энергии ваше тело использует). Если вы производите больше, чем потребляете, вы можете набрать килограммы, так как энергия откладывается в виде жира.Если вы используете больше, чем производите, может произойти обратное.

    Конечно, бывают исключения, особенно если у вас есть заболевания, которые влияют на ваши гормоны.

    Работа вашего тела по-разному может дать разные результаты. Кардио и силовые тренировки связаны с разными метаболическими процессами. Вот как получить максимальную отдачу от тренировок в зависимости от ваших целей.

    Катаболические

    Катаболические упражнения - это аэробные или кардио упражнения.Они могут включать в себя движения, такие как бег, плавание и езда на велосипеде, когда вы находитесь в устойчивом активном состоянии в течение относительно длительного периода времени. По данным Американского колледжа спортивной медицины, стремитесь выполнять по крайней мере следующее количество аэробных упражнений каждую неделю:

    • 150 минут средней интенсивности или
    • 75 минут высокой интенсивности

    Обычно это делится на три части. до пяти дней обучения. Если у вас в анамнезе есть заболевания, посоветуйтесь со своим врачом, чтобы получить одобрение, прежде чем начинать этот режим.

    Ваша частота сердечных сокращений, артериальное давление и дыхание повышаются во время катаболических упражнений. Во время потоотделения организм расщепляет гликоген, чтобы использовать его в качестве топлива. Когда у вас заканчиваются запасы углеводов, кортизол в организме использует аминокислоты для выработки энергии.

    В результате катаболические упражнения могут помочь вам построить здоровое сердце и легкие. Но они также могут привести к потере массы тела, как мышц, так и жира. Со временем он эффективно разрушает мышцы. Некоторые из этих мышц могут быть восстановлены во время сна или отдыха в течение восьми или более часов в результате спонтанных анаболических процессов.

    Anabolic

    Если вы хотите нарастить мышечную массу, слишком долгое нахождение в катаболическом состоянии может работать против вас. Это может уменьшить вашу мышечную массу и даже поставить под угрозу ваше общее состояние здоровья. Предотвращение катаболизма - это поддержание баланса между питанием, тренировками и восстановлением.

    Мышцы можно поддерживать, тренируясь три или четыре дня в неделю. Следующая примерная программа упражнений может помочь вам оставаться в строительном или анаболическом состоянии. Попробуйте сосредоточиться на одной области в день, отдыхая между ними.

    Анаболизм требует энергии для роста и развития. Катаболизм использует энергию для разрушения. Эти метаболические процессы работают вместе во всех живых организмах, чтобы производить энергию и восстанавливать клетки.

    Понимание разницы между анаболическими и катаболическими процессами может помочь вам достичь ваших целей в тренажерном зале и на весах. Чего бы вы ни хотели достичь, регулярные упражнения - кардио-тренировки и - плюс диета, богатая цельными продуктами, помогут вам оставаться здоровым как внутри, так и снаружи.

    .

    Человеческое тело: анатомия, факты и функции

    Человеческое тело - это все, что составляет тебя. Основные части человеческого тела - это голова, шея, туловище, руки и ноги.

    [Галерея изображений: Человек BioDigital]

    Системы организма

    Наши тела состоят из ряда биологических систем, которые выполняют определенные функции, необходимые для повседневной жизни.

    Работа системы кровообращения заключается в перемещении крови, питательных веществ, кислорода, углекислого газа и гормонов по телу.Он состоит из сердца, крови, кровеносных сосудов, артерий и вен.

    Пищеварительная система состоит из ряда связанных органов, которые вместе позволяют организму расщеплять и поглощать пищу, а также удалять отходы. Он включает в себя рот, пищевод, желудок, тонкий кишечник, толстый кишечник, прямую кишку и задний проход. Печень и поджелудочная железа также играют роль в пищеварительной системе, поскольку они производят пищеварительные соки.

    Эндокринная система состоит из восьми основных желез, которые выделяют гормоны в кровь.Эти гормоны, в свою очередь, перемещаются в разные ткани и регулируют различные функции организма, такие как обмен веществ, рост и половую функцию.

    Иммунная система - это защита организма от бактерий, вирусов и других патогенов, которые могут быть вредными. Он включает лимфатические узлы, селезенку, костный мозг, лимфоциты (включая B-клетки и T-клетки), тимус и лейкоциты, которые являются лейкоцитами.

    Лимфатическая система включает лимфатические узлы, лимфатические протоки и лимфатические сосуды, а также играет роль в защите организма.Его основная задача - производить и перемещать лимфу, прозрачную жидкость, содержащую лейкоциты, которые помогают организму бороться с инфекцией. Лимфатическая система также удаляет лишнюю лимфатическую жидкость из тканей тела и возвращает ее в кровь.

    Нервная система контролирует как произвольные действия (например, сознательные движения), так и непроизвольные действия (например, дыхание), и посылает сигналы в различные части тела. Центральная нервная система включает головной и спинной мозг. Периферическая нервная система состоит из нервов, которые соединяют все остальные части тела с центральной нервной системой.

    Мышечная система тела состоит из примерно 650 мышц, которые помогают в движении, кровотоке и других функциях организма. Существует три типа мышц: скелетная мышца, которая связана с костью и помогает при произвольном движении, гладкая мышца, которая находится внутри органов и помогает перемещать вещества через органы, и сердечная мышца, которая находится в сердце и помогает перекачивать кровь.

    Репродуктивная система позволяет человеку воспроизводить потомство. Мужская репродуктивная система включает пенис и яички, которые производят сперму.Женская репродуктивная система состоит из влагалища, матки и яичников, которые производят яйца. Во время зачатия сперматозоид сливается с яйцеклеткой, в результате чего создается оплодотворенная яйцеклетка, которая имплантируется и растет в матке. [Связано: Неуклюжая анатомия: 10 странных фактов о женском теле]

    Наши тела поддерживаются скелетной системой, которая состоит из 206 костей, связанных сухожилиями, связками и хрящами. Скелет не только помогает нам двигаться, но также участвует в производстве клеток крови и хранении кальция.Зубы также являются частью скелетной системы, но не считаются костями.

    Дыхательная система позволяет нам поглощать жизненно важный кислород и выводить углекислый газ в процессе, который мы называем дыханием. Он состоит в основном из трахеи, диафрагмы и легких.

    Мочевина помогает выводить из организма отходы, называемые мочевиной, которые образуются при расщеплении определенных продуктов. Вся система включает две почки, два мочеточника, мочевой пузырь, две мышцы сфинктера и уретру.Моча, вырабатываемая почками, спускается по мочеточникам в мочевой пузырь и выходит из организма через уретру.

    Кожа, или покровная система, является самым большим органом тела. Он защищает нас от внешнего мира и является нашей первой защитой от бактерий, вирусов и других патогенов. Наша кожа также помогает регулировать температуру тела и выводить отходы через потоотделение. В покровную систему помимо кожи входят волосы и ногти.

    Жизненно важные органы

    У человека есть пять жизненно важных органов, которые необходимы для выживания.Это мозг, сердце, почки, печень и легкие.

    Человеческий мозг - это центр управления телом, который принимает и отправляет сигналы другим органам через нервную систему и через секретируемые гормоны. Он отвечает за наши мысли, чувства, память и общее восприятие мира.

    Человеческое сердце отвечает за перекачку крови по всему нашему телу.

    Работа почек заключается в удалении шлаков и лишней жидкости из крови. Почки извлекают мочевину из крови и соединяют ее с водой и другими веществами, образуя мочу.

    Печень выполняет множество функций, включая детоксикацию вредных химических веществ, расщепление лекарств, фильтрацию крови, секрецию желчи и выработку белков свертывания крови.

    Легкие отвечают за удаление кислорода из воздуха, которым мы дышим, и перенос его в нашу кровь, где он может быть отправлен в наши клетки. Легкие также удаляют углекислый газ, который мы выдыхаем.

    Интересные факты

    • Человеческое тело содержит почти 100 триллионов клеток.
    • В организме человека бактерий как минимум в 10 раз больше, чем клеток.
    • В среднем взрослый человек делает более 20 000 вдохов в день.
    • Каждый день почки обрабатывают около 200 литров (50 галлонов) крови, чтобы отфильтровать около 2 литров отходов и воды.
    • Взрослые ежедневно выделяют около четверти (1,42 литра) мочи.
    • Человеческий мозг содержит около 100 миллиардов нервных клеток.
    • Вода составляет более 50 процентов веса тела среднего взрослого.

    Вы используете глаза, чтобы видеть, уши, чтобы слышать, и ваши мышцы, чтобы выполнять тяжелую работу.Ну вроде как. На самом деле, большинство частей тела намного сложнее, а некоторым, похоже, вообще нечего там находиться.

    Готовы к поступлению в медицинскую школу? Test Your Body Smarts

    Примечание редактора: Если вам нужна дополнительная информация по этой теме, мы рекомендуем следующую книгу (доступную на amazon.com):

    Связанные страницы

    Системы человеческого тела

    • Система кровообращения: факты, функции и заболевания
    • Пищеварительная система: факты, функции и заболевания
    • Эндокринная система: факты, функции и заболевания
    • Иммунная система: болезни, нарушения и функции
    • Лимфатическая система: факты, функции и Заболевания
    • Мышечная система: факты, функции и заболевания
    • Нервная система: факты, функции и заболевания
    • Репродуктивная система: факты, функции и заболевания
    • Дыхательная система: факты, функции и заболевания
    • Скелетная система: факты, функции и Болезни
    • Кожа: факты, болезни и состояния
    • Мочевыделительная система: факты, функции и заболевания

    Части человеческого тела

    • Мочевой пузырь: факты, функции и заболевание
    • Человеческий мозг: факты, анатомия и картографический проект
    • Толстая кишка: факты, функции и заболевания
    • Уши: факты, функции и заболевания
    • Пищевод: факты, функции и заболевания
    • Как работает человеческий глаз
    • Желчный пузырь: функции, проблемы и здоровое питание
    • Сердце человека: анатомия, функции и факты
    • Почки: факты, функции и заболевания
    • Печень: функция, отказ И болезни
    • Легкие: факты, функции и заболевания
    • Нос: факты, функции и заболевания
    • Поджелудочная железа: функция, расположение и заболевания
    • Тонкий кишечник: функция, длина и проблемы
    • Селезенка: функция, расположение и проблемы
    • Желудок: факты, функции и заболевания
    • Язык: факты, функции и заболевания
    .

    Митохондрии: форма, функция и болезнь

    Митохондрии часто называют электростанциями клетки. Они помогают превратить энергию, которую мы получаем из пищи, в энергию, которую может использовать клетка. Но митохондрии - это не только производство энергии.

    Митохондрии, присутствующие почти во всех типах клеток человека, жизненно важны для нашего выживания. Они производят большую часть нашего аденозинтрифосфата (АТФ), энергетической валюты клетки.

    Митохондрии также участвуют в других задачах, таких как передача сигналов между клетками и гибель клеток, иначе известная как апоптоз.

    В этой статье мы рассмотрим, как работают митохондрии, как они выглядят, и объясним, что происходит, когда они перестают выполнять свою работу правильно.

    Митохондрии маленькие, часто от 0,75 до 3 микрометров, и не видны под микроскопом, если они не окрашены.

    В отличие от других органелл (миниатюрных органов внутри клетки) они имеют две мембраны, внешнюю и внутреннюю. Каждая мембрана выполняет разные функции.

    Митохондрии разделены на разные компартменты или области, каждая из которых выполняет разные роли.

    Некоторые из основных областей включают:

    Внешняя мембрана: Небольшие молекулы могут свободно проходить через внешнюю мембрану. Эта внешняя часть включает белки, называемые поринами, которые образуют каналы, позволяющие белкам пересекаться. На внешней мембране также находится ряд ферментов с широким спектром функций.

    Межмембранное пространство: Это область между внутренней и внешней мембранами.

    Внутренняя мембрана: Эта мембрана удерживает белки, которые выполняют несколько функций.Поскольку во внутренней мембране нет поринов, она непроницаема для большинства молекул. Молекулы могут пересекать внутреннюю мембрану только в специальных мембранных транспортерах. Внутренняя мембрана - это место, где создается большая часть АТФ.

    Cristae: Это складки внутренней мембраны. Они увеличивают площадь поверхности мембраны, тем самым увеличивая пространство, доступное для химических реакций.

    Матрица: Это пространство внутри внутренней мембраны. Он содержит сотни ферментов и играет важную роль в производстве АТФ.Здесь размещается митохондриальная ДНК (см. Ниже).

    Различные типы клеток имеют разное количество митохондрий. Например, в зрелых эритроцитах их вообще нет, тогда как в клетках печени их может быть более 2000. Клетки с высоким потреблением энергии, как правило, имеют большее количество митохондрий. Около 40 процентов цитоплазмы в клетках сердечной мышцы занято митохондриями.

    Хотя митохондрии часто изображаются как органеллы овальной формы, они постоянно делятся (делятся) и соединяются (слияние).Итак, в действительности эти органеллы связаны друг с другом в постоянно изменяющиеся сети.

    Кроме того, в сперматозоидах митохондрии закручены в средней части и обеспечивают энергию для движения хвоста.

    Хотя большая часть нашей ДНК хранится в ядре каждой клетки, митохондрии имеют свой собственный набор ДНК. Интересно, что митохондриальная ДНК (мтДНК) больше похожа на бактериальную ДНК.

    МтДНК содержит инструкции для ряда белков и другого клеточного вспомогательного оборудования по 37 генам.

    Геном человека, хранящийся в ядрах наших клеток, содержит около 3,3 миллиарда пар оснований, тогда как мтДНК состоит менее чем из 17000.

    Во время репродукции половина ДНК ребенка поступает от отца, а половина - от матери. Однако ребенок всегда получает свою мтДНК от матери. Благодаря этому мтДНК оказалась очень полезной для отслеживания генетических линий.

    Например, анализ мтДНК пришел к выводу, что люди, возможно, возникли в Африке относительно недавно, около 200 000 лет назад, произошли от общего предка, известного как митохондриальная Ева.

    Хотя наиболее известная роль митохондрий - производство энергии, они также выполняют другие важные задачи.

    На самом деле, только около 3 процентов генов, необходимых для того, чтобы митохондрии, поступали в оборудование для производства энергии. Подавляющее большинство из них заняты другими видами деятельности, специфичными для того типа клеток, в котором они находятся.

    Ниже мы рассмотрим некоторые из ролей митохондрий:

    Производство энергии

    АТФ, сложное органическое химическое вещество, обнаруженное во всех формах жизни, часто называют молекулярной единицей валюты, поскольку оно поддерживает метаболические процессы.Большая часть АТФ производится в митохондриях в результате ряда реакций, известных как цикл лимонной кислоты или цикл Кребса.

    Производство энергии в основном происходит на складках или кристах внутренней мембраны.

    Митохондрии преобразуют химическую энергию пищи, которую мы едим, в форму энергии, которую может использовать клетка. Этот процесс называется окислительным фосфорилированием.

    Цикл Кребса производит химическое вещество под названием НАДН. НАДН используется ферментами, встроенными в кристы, для производства АТФ.В молекулах АТФ энергия хранится в виде химических связей. Когда эти химические связи разрываются, можно использовать энергию.

    Смерть клетки

    Смерть клетки, также называемая апоптозом, является важной частью жизни. Когда клетки стареют или разрушаются, они очищаются и разрушаются. Митохондрии помогают решить, какие клетки уничтожены.

    Митохондрии выделяют цитохром C, который активирует каспазу, один из главных ферментов, участвующих в разрушении клеток во время апоптоза.

    Поскольку при некоторых заболеваниях, таких как рак, происходит нарушение нормального апоптоза, считается, что митохондрии играют определенную роль в заболевании.

    Накопление кальция

    Кальций жизненно важен для ряда клеточных процессов. Например, высвобождение кальция обратно в клетку может инициировать высвобождение нейротрансмиттера из нервной клетки или гормонов из эндокринных клеток. Кальций также необходим для работы мышц, оплодотворения и свертывания крови, среди прочего.

    Поскольку кальций очень важен, клетка строго регулирует его. Митохондрии играют в этом роль, быстро поглощая ионы кальция и удерживая их до тех пор, пока они не понадобятся.

    Другие роли кальция в клетке включают регулирование клеточного метаболизма, синтеза стероидов и передачу сигналов гормонов.

    Производство тепла

    Когда нам холодно, мы дрожим, чтобы согреться. Но тело также может генерировать тепло и другими способами, одним из которых является использование ткани, называемой бурым жиром.

    Во время процесса, называемого утечкой протонов, митохондрии могут выделять тепло. Это известно как термогенез без дрожи. Самый высокий уровень коричневого жира обнаруживается у младенцев, когда мы более восприимчивы к холоду, и с возрастом уровень постепенно снижается.

    Поделиться на Pinterest Если митохондрии не функционируют должным образом, это может вызвать ряд медицинских проблем.

    ДНК внутри митохондрий более восприимчива к повреждениям, чем остальная часть генома.

    Это потому, что свободные радикалы, которые могут вызвать повреждение ДНК, образуются во время синтеза АТФ.

    Кроме того, в митохондриях отсутствуют те же защитные механизмы, что и в ядре клетки.

    Однако большинство митохондриальных заболеваний возникает из-за мутаций в ядерной ДНК, которые влияют на продукты, попадающие в митохондрии.Эти мутации могут быть наследственными или спонтанными.

    Когда митохондрии перестают функционировать, клетка, в которой они находятся, испытывает нехватку энергии. Итак, в зависимости от типа клетки симптомы могут сильно различаться. Как правило, дефектные митохондрии больше всего поражают клетки, которым требуется наибольшее количество энергии, например клетки сердечной мышцы и нервы.

    Следующий отрывок взят из United Mitochondrial Disease Foundation:

    «Поскольку митохондрии выполняют очень много разных функций в разных тканях, существуют буквально сотни различных митохондриальных заболеваний.[…] Из-за сложного взаимодействия между сотнями генов и клеток, которые должны взаимодействовать, чтобы наш метаболический механизм работал бесперебойно, отличительной чертой митохондриальных заболеваний является то, что идентичные мутации мтДНК не могут вызывать идентичные заболевания ».

    Болезни, которые вызывают разные симптомы, но вызваны одной и той же мутацией, называются генокопиями.

    И наоборот, заболевания, которые имеют одинаковые симптомы, но вызваны мутациями в разных генах, называются фенокопиями.Примером фенокопии является синдром Ли, который может быть вызван несколькими различными мутациями.

    Хотя симптомы митохондриального заболевания сильно различаются, они могут включать:

    • потерю мышечной координации и слабость
    • проблемы со зрением или слухом
    • нарушения обучаемости
    • болезни сердца, печени или почек
    • желудочно-кишечные проблемы
    • неврологические проблемы, в том числе деменция

    Другие состояния, которые, как считается, связаны с некоторым уровнем митохондриальной дисфункции, включают:

    В последние годы исследователи изучили связь между дисфункцией митохондрий и старением.Существует ряд теорий старения, и митохондриальная теория старения со свободными радикалами стала популярной за последнее десятилетие или около того.

    Теоретически активные формы кислорода (АФК) производятся в митохондриях как побочный продукт производства энергии. Эти сильно заряженные частицы повреждают ДНК, жиры и белки.

    Из-за повреждения, вызванного ROS, функциональные части митохондрий повреждаются. Когда митохондрии больше не могут так хорошо функционировать, вырабатывается больше АФК, что еще больше усугубляет повреждение.

    Хотя корреляция между митохондриальной активностью и старением была обнаружена, не все ученые пришли к одним и тем же выводам. Их точная роль в процессе старения до сих пор неизвестна.

    В двух словах

    Митохондрии, пожалуй, самые известные органеллы. И хотя их обычно называют электростанциями клетки, они выполняют широкий спектр действий, о которых гораздо меньше известно. Митохондрии чрезвычайно важны для повседневных функций наших клеток, от хранения кальция до выработки тепла.

    .

    Типы суставов, переменные и многое другое

    На вопрос о том, сколько суставов в человеческом теле, сложно ответить, потому что он зависит от ряда переменных. Сюда входят:

    • Определение суставов. Некоторые определяют сустав как точку, в которой соединяются 2 кости. Другие предполагают, что это точка, в которой кости соединяются с целью движения частей тела.
    • Включение сесамоидов. Сесамоиды - это кости, вставленные в сухожилия, но не связанные с другими костями.Надколенник (коленная чашечка) - самый крупный сесамовидный сустав. Эти кости различаются по количеству от человека к человеку.
    • Возраст человека. Младенцы появляются примерно с 270 костей. Некоторые из этих костей срастаются во время роста. У взрослых около 206 именованных костей, 80 из которых находятся в осевом скелете и 126 - в аппендикулярном скелете.

    Короче говоря, однозначного ответа на этот вопрос нет. Приблизительное число составляет от 250 до 350.

    Человеческое тело имеет три основных типа суставов.Они классифицируются по разрешенным механизмам:

    • Синартрозы (недвижимые). Это фиксированные или фиброзные суставы. Они определяются как две или более костей в тесном контакте, которые не имеют движения. Примером могут служить кости черепа. Неподвижные суставы между пластинами черепа известны как швы.
    • Амфиартрозы (малоподвижные). Также известные как хрящевые суставы, эти суставы определяются как две или более костей, которые держатся вместе так плотно, что могут иметь место только ограниченные движения.Позвонки позвоночника - хорошие тому примеры.
    • Диартрозы (свободно перемещаемые). Эти суставы, также известные как синовиальные суставы, содержат синовиальную жидкость, позволяющую всем частям сустава плавно перемещаться друг относительно друга. Это самые распространенные суставы в вашем теле. Примеры включают суставы, такие как колено и плечо.

    Существует шесть типов свободно подвижных диартрозных (синовиальных) суставов:

    • Шаровидный сустав. Обеспечивая движение во всех направлениях, шаровидный шарнир имеет округлую головку одной кости, находящуюся в чашечке другой кости.Примеры включают плечевой и тазобедренный суставы.
    • Шарнирный шарнир. Петли подобны двери, открывающейся и закрывающейся в одном направлении, в одной плоскости. Примеры включают локтевой и коленный суставы.
    • Кондилоидный сустав. Кондилоидный сустав допускает движение, но не вращается. Примеры включают суставы пальцев и челюсть.
    • Шарнирный шарнир. Поворотный сустав, также называемый вращательным суставом или трохоидным суставом, характеризуется одной костью, которая может поворачиваться в кольцо, образованное из второй кости.Примерами являются суставы между локтевой и лучевой костями, которые вращают ваше предплечье, а также сустав между первым и вторым позвонками на шее.
    • Шарнир скольжения. Скользящее соединение также называется плоским соединением. Хотя он допускает лишь ограниченное движение, он отличается гладкими поверхностями, которые могут скользить друг по другу. Примером может служить сустав запястья.
    • Седло. Хотя седловой шарнир не допускает вращения, он позволяет перемещаться вперед и назад и из стороны в сторону.Примером может служить сустав у основания большого пальца.

    Скелетная система взрослого человека имеет сложную архитектуру, которая включает 206 названных костей, соединенных хрящами, сухожилиями, связками и тремя типами суставов:

    • синартрозов (неподвижных)
    • амфиартрозов (малоподвижных)
    • диартрозов (свободно подвижный)

    Хотя фактическое количество суставов у любого человека зависит от ряда переменных, расчетное количество составляет от 250 до 350.

    .

    Как называются 78 органов тела (образовательные)

    Органы и системы органов человеческого тела:

    Знаете ли вы, как такие функции, как коммуникация, транспортировка, размножение и рост, выполняются коллективными усилиями различных органов тела? Хотя у вас уже есть обширная информация о своем теле, эта статья направлена ​​на раскрытие некоторых потрясающих фактов, которые могут быть вам неизвестны.

    В биологии клетка известна как основной строительный блок и наименьшая единица жизни.Когда похожие клетки объединяются в группу, они образуют ткань. С другой стороны, две или более ткани объединяются, образуя важный объект, называемый органом. Группирование различных органов приводит к образованию системы органов.

    Существует до 80 органов, которые образуют группы и работают в координации друг с другом для выполнения определенной задачи. С другой стороны, группа органов, выполняющих определенную функцию, называется системой органов. Например, сердце, кровь, кровеносные сосуды и легкие являются основными компонентами системы кровообращения.

    Знаете ли вы, сколько систем органов в вашем теле? Что ж, существует почти дюжина систем органов, каждая из которых состоит из нескольких отдельных органов, работающих в координации друг с другом. В то же время существует координация и связь между различными системами органов, которые вместе образуют человека.

    Среди них мозг, сердце, легкие, печень и почки считаются основными или жизненно важными органами человеческого тела. Главный орган, мозг, служит центральным процессором или центром управления, а биение сердца считается признаком жизни человека.

    Легкие помогают снабжать кислородом каждую клетку и выводить углекислый газ из организма. Печень имеет по крайней мере три превосходные степени, то есть это самый большой, самый тяжелый и самый горячий внутренний орган. Почки служат важным компонентом выделительной системы, которая отвечает за удаление излишков, ненужных материалов из жидкостей организма.

    8 основных органов тела:

    Не все органы тела необходимы для выживания человека.Есть определенные органы, такие как руки, ноги, желудок, толстый кишечник и язык, полное удаление которых не подвергнет вашу жизнь опасности. Другие органы, такие как мозг, сердце, почки, легкие, поджелудочная железа и т. Д., Необходимы для вашего выживания. Их называют основными или жизненно важными органами вашего тела. Вы можете увидеть с высоты птичьего полета форму, размер и функционирование основных органов тела с помощью следующего описания:

    • Мастер-орган:
    • Мозг, лежащий на верхней части тела и заключенный в невероятно твердую защитную оболочку черепа, служит центром управления всеми функциями тела.Мозг массой около 1,4 кг занимает более 1200 кубических сантиметров и составляет около двух процентов от общей массы тела.

      Как и мозг других видов млекопитающих, его можно разделить на три основных отдела: передний, средний и задний мозг. В абсолютном выражении человеческий мозг меньше, чем у крупных млекопитающих, таких как киты и слоны. Но если принять во внимание относительный размер мозга, он окажется в два раза больше, чем у афалин.

    • Насосный орган:
    • Сердцу, одному из важнейших органов тела, отводится роль перекачивания крови с такой силой, что она достигает каждой отдельной клетки. Кровь несет с собой питательные вещества, а также кислород, которые должны быть доставлены ко всем клеткам. Другая важная функция крови - вывод отработанных веществ и газов для выведения из организма.

      измерения 5 дюймов в длину, 3.5 дюймов в ширину и 2,5 дюйма в толщину, человеческое сердце кажется размером с кулак. Однако насосный орган спортсмена может значительно увеличиться в размерах из-за чрезмерных нагрузок. В нем четыре камеры, две верхние - предсердия, а нижние - желудочки.

    • Орган дыхания:
    • Легкие - органы дыхания, так как они участвуют в газообмене. Если эти жизненно важные органы будут удалены из-за какого-либо заболевания, пострадавший больше не сможет жить.Они находятся в области груди по обе стороны от сердца. Основные трубчатые ветви, называемые бронхами, постепенно делятся на бронхиолы и альвеолы ​​- мельчайшие воздушные мешочки с одноклеточной выстилкой.

      Основная роль, отведенная им, - извлечение кислорода из атмосферного воздуха и выделение углекислого газа из организма. Когда вы вдыхаете воздух в легкие, кислород переносится в кровоток, а углекислый газ из кровотока переносится в атмосферу.

    • Железистый орган двойного действия:
    • Поджелудочная железа - это железистый орган, расположенный за желудком в брюшной полости. Благодаря своей двойной функциональности, он тесно связан как с пищеварительной, так и с эндокринной системами. Этот шестидюймовый большой орган можно разделить на тело, хвост, шею и голову.

      Если посмотреть на свою пищеварительную функцию, поджелудочная железа выделяет и выделяет жидкость, содержащую ферменты, в двенадцатиперстную кишку тонкой кишки, называемую панкреатическим соком.Это известно как экзокринная секреция. Эти ферменты помогают переваривать липиды, белки и жиры. Эндокринная секреция органа содержит очень важный гормон, в том числе инсулин и глюкагон.

    • Фильтрующий орган:
    • Печень, почки и легкие - это органы, очищающие кровь. Ферменты, выделяемые печенью, выводят токсины из различных вредных веществ, а легкие выводят углекислый газ (отработанный дыхательный газ) из крови.С другой стороны, почки служат естественными очистителями вашего тела.

      В задней части живота есть две почки в форме бобов, каждая размером пять или шесть дюймов в длину. Их основная функция - фильтровать ненужные вещества из крови и выводить их из организма в виде мочи.

    • Детоксифицирующий орган:
    • В метаболическом отношении печень является наиболее сложным органом человека, поскольку она выполняет ряд различных метаболически важных функций.Помимо детоксикации ядовитых веществ, он также производит белки и гормоны. Другие функции печени включают свертывание крови, контроль уровня сахара в крови и уничтожение микробов.

      Как детоксикант, печень превращает различные вредные вещества, такие как аммиак, метаболические отходы, алкоголь и химические вещества, в менее вредные соединения. Эти нейтрализованные и менее вредные вещества затем выводятся из организма.

    • Орган зрения:
    • Хотя ваш глаз и не включен в список жизненно важных органов, вы можете наслаждаться успокаивающими и очаровательными цветами естественного и искусственного мира вокруг вас.Этот сложный орган способен обнаруживать одиночный фотон, а также различать почти десять миллионов цветов!

      Строение глаза можно разделить на небольшой сегмент роговицы и большую склеротическую камеру размером 8 мм и 24 мм соответственно. Обычно глаз взрослого человека может достигать 7,5 грамма в весе и шести кубических сантиметров в объеме.

    • Орган поглощения пищи:
    • Неотъемлемый компонент пищеварительной системы, тонкий кишечник или тонкий кишечник, служит основным органом всасывания пищи.В то же время он также играет важную роль в процессе пищеварения. Все основные виды пищи, а именно углеводы, липиды и белки, далее перевариваются и распадаются на более мелкие усваиваемые продукты.

      Тонкая кишка у женщин немного длиннее. Его длина составляет 6,9 м и 7,1 м у взрослого мужчины и женщины соответственно. Он может иметь диаметр до 1 дюйма или чуть больше. Интересно, что общая площадь может достигать 30 квадратных метров! Но как это возможно? Что ж, это складки, ворсинки и микроворсинки, которые в значительной степени способствуют увеличению площади поверхности.

    30 интересных фактов об органах тела:

    • Главный орган мозга - это центр управления телом, действующий как центральный процессор компьютера.
    • Ваша печень - не только самый горячий, но и самый большой и метаболически сложный внутренний орган вашего тела.
    • Поскольку 60% сухого веса приходится на жиры, мозг является самым жирным органом.
    • Кожа - самый большой орган тела, занимающий площадь 2 квадратных метра и составляющий примерно пятнадцать процентов веса тела.
    • Единственные органы вашего тела, которые могут плавать в воде, - это легкие, так как они могут удерживать почти литр воздуха в любой момент.
    • Если все дыхательные пути, проходящие через легкие, соединить встык, их длина может достигнуть 2400 километров!
    • Быстрый прогресс в области нейробиологии превратил многие «факты о мозге» прошлого в «мифы о мозге» сегодняшнего дня.
    • Хотя люди веками изо всех сил пытались исследовать секретную силу мозга, он по-прежнему остается наименее изученным органом человеческого тела.
    • Главный орган, хотя и составляет всего 2% от веса, использует около 20% от общего количества кислорода, а также энергии, необходимой организму.
    • Если вынуть и соединить конец в конец по прямой линии, кровеносные сосуды, присутствующие в коже, могут иметь длину до одиннадцати миль.
    • Знаете ли вы, что ваша память, внимание и другие когнитивные навыки могут серьезно пострадать всего из-за двухпроцентного обезвоживания серого вещества в черепе?
    • Внесены в число основных органов, почки играют роль очищения крови и удаления продуктов жизнедеятельности путем выделения.
    • Размер почки примерно равен размеру компьютерной мыши, и, что удивительно, если функционирует только 75% одной почки, она может поддерживать жизнь!
    • Среди трансплантатов органов очень распространена трансплантация почки. Вы можете легко пожертвовать одну из своих почек, не подвергая свою жизнь риску.
    • Язык, известный как мышечный гидростат, - единственная мышца в теле, которая работает без поддержки скелета.
    • Во рту может быть до 10 000 вкусовых рецепторов, большинство из которых находится на языке, а остальные - на губах, нёбе и щеках.
    • Общее количество крошечных воздушных мешков, называемых альвеолами, может достигать 500 миллионов в обоих легких.
    • Знаете ли вы, что кончики ваших пальцев более чувствительны, чем глаза, поскольку они содержат большое количество рецепторов для отправки сообщений в мозг?
    • Ногти на пальцах рук и ног на самом деле являются модификацией волос.
    • Соляная кислота, секретируемая внутри желудка, достаточно сильна, чтобы уничтожать микробы, попадающие в организм с пищей, тем самым действуя как первая линия защиты иммунной системы.
    • Тонкая кишка имеет длину около шести метров и ассимилирует примерно девяносто процентов пищи, которую вы едите.
    • Хотя удаление желудка является важным органом человеческого тела, оно не представляет угрозы для жизни. Люди уже выжили и могут жить без этого.
    • В течение средней продолжительности жизни человека толстый кишечник перерабатывает около пятидесяти тонн пищи. Другими словами, человек за всю жизнь потребляет около 50 тонн пищи.
    • Так же, как и желудок, его можно удалить полностью, не создавая угрозы для жизни человека.
    • До 19 века люди ничего не знали о действительной функции маленького эластичного органа, называемого поджелудочной железой.
    • Из-за ее эластичной природы медицинские эксперты рассматривали поджелудочную железу просто как амортизатор, не имеющий другой важной роли в организме.
    • Когда гормоны поджелудочной железы попадают в кровоток, это называется эндокринной секрецией.С другой стороны, процесс опорожнения панкреатического сока в двенадцатиперстную кишку тонкой кишки называется экзокринной секрецией.
    • Грудная клетка состоит из двенадцати уникально изогнутых костей с головой, шеей и стержнем, которые вместе служат для придания формы верхней части вашего тела, а также защиты жизненно важных органов.
    • Во время бега задействуются все мышцы ног, поэтому оно считается лучшим упражнением для ног.
    • Развитие глаз начинается уже через две недели после зачатия. Знаете ли вы, что ваш глаз настолько сложен, что в нем более двух миллионов рабочих частей?
    .

    Диаграмма и все, что вам нужно знать

    В человеческом теле есть пять жизненно важных органов, которые необходимы людям, чтобы оставаться в живых. Это также ряд других органов, которые работают вместе с этими жизненно важными органами, чтобы гарантировать хорошее функционирование тела.

    Продолжайте читать, чтобы узнать больше об органах тела, различных системах органов, а также некоторые рекомендации о том, как поддерживать оптимальное здоровье.

    На интерактивной карте тела ниже показаны органы и системы, в которых они играют роль.Нажмите на карту, чтобы узнать больше.

    Жизненно важные органы - это те органы, которые необходимы человеку для выживания. Проблема с любым из этих органов может быстро стать опасной для жизни.

    Без этих органов жить невозможно. Тем не менее, в случае парных почек и легких человек может жить без одной из пары.

    В следующих разделах более подробно рассматриваются пять жизненно важных органов.

    Мозг

    Мозг - это центр управления телом. Он составляет ядро ​​центральной нервной системы, создавая, отправляя и обрабатывая нервные импульсы, мысли, эмоции, физические ощущения и многое другое.

    Череп окружает мозг, защищая его от травм.

    Неврологи - это врачи, изучающие нервную систему. Со временем они определили множество частей мозга, включая системы мозга, которые функционируют аналогично независимым органам.

    Мозг состоит из трех основных частей: головного мозга, мозжечка и ствола мозга. В этих областях есть несколько ключевых компонентов головного мозга, которые вместе со спинным мозгом составляют центральную нервную систему.

    Основные области центральной нервной системы включают:

    • Мозговой мозг: Это нижняя часть ствола мозга. Он помогает контролировать работу сердца и легких.
    • Мост: Расположен над продолговатым мозгом в стволе мозга и помогает контролировать движения глаз и лица.
    • Спинной мозг: Спинной мозг проходит от основания мозга до центра спины и помогает выполнять многие автоматические функции, такие как рефлексы.Он также отправляет сообщения в мозг и из него.
    • Теменная доля: Теменная доля расположена в центре мозга и поддерживает идентификацию объектов и пространственное мышление. Он также играет роль в интерпретации сигналов боли и прикосновения.
    • Лобная доля: Лобная доля, расположенная в передней части головы, является самой большой частью мозга. Он играет роль во многих сознательных функциях, включая личность и движение. Это также помогает мозгу интерпретировать запахи.
    • Затылочные доли: Затылочные доли, расположенные рядом с задней частью мозга, в первую очередь интерпретируют зрительные сигналы.
    • Височные доли: Расположенные по обе стороны от мозга, височные доли играют роль во многих функциях, включая речь, распознавание запахов и кратковременную память.

    Две половины мозга называются правым и левым полушариями. Эти два полушария соединяет мозолистое тело.

    Сердце

    Сердце - важнейший орган системы кровообращения, который помогает доставлять кровь к телу.Он работает с легкими, добавляя кислород в кровь и перекачивая эту свежую оксигенированную кровь по кровеносным сосудам и по всему телу.

    Сердце также имеет внутри электрическую систему. Электрические импульсы в сердце помогают обеспечить его постоянный ритм и правильную частоту.

    Частота сердечных сокращений увеличивается, когда организму требуется больше крови, например, во время интенсивных упражнений. Он уменьшается во время отдыха.

    Сердце имеет четыре камеры. Две верхние камеры называются предсердиями, а две нижние камеры - желудочками.

    Кровь течет в правое предсердие из вен сердца и тела (кроме легких), затем течет в правый желудочек. Оттуда он впадает в легочную артерию, ответвления которой доходят до легких. Затем легкие насыщают кровь кислородом.

    Эта насыщенная кислородом кровь проходит из легких по легочным венам, которые возвращаются и соединяются вместе, в левое предсердие, а затем через левый желудочек. Оттуда сердце качает кровь через артерию, которая разветвляется, чтобы распределять кровь по себе и другим частям тела (кроме легких).

    Сердце имеет четыре клапана, которые обеспечивают кровоток в правильном направлении. К сердечным клапанам относятся:

    • трехстворчатый клапан
    • легочный клапан
    • митральный клапан
    • аортальный клапан

    Узнайте больше о сердце здесь.

    Легкие

    Легкие работают вместе с сердцем, насыщая кровь кислородом. Они делают это, фильтруя воздух, которым дышит человек, а затем удаляют избыток углекислого газа в обмен на кислород.

    Некоторые части легких помогают телу всасывать воздух, фильтровать его, а затем насыщать кровь кислородом.Это:

    • Левый и правый бронхи: Трахея разделяется на эти трубки, которые проходят в легкие и имеют ответвления. Эти более мелкие бронхи разделяются на еще более мелкие трубки, называемые бронхиолами.
    • Альвеолы: Альвеолы ​​- это крошечные воздушные мешочки на концах бронхиол. Они работают как воздушные шары, расширяясь, когда человек вдыхает, и сокращаясь, когда он выдыхает.
    • Кровеносные сосуды: В легких множество кровеносных сосудов, по которым кровь идет к сердцу и от него.

    При обширной медицинской помощи человек может жить без одного легкого, но он не может выжить без легких.

    Диафрагма, представляющая собой толстую мышечную ткань непосредственно под легкими, помогает легким расширяться и сокращаться, когда человек дышит.

    Узнайте больше о легких здесь.

    Печень

    Печень - важнейший орган метаболической системы. Он помогает преобразовывать питательные вещества в полезные вещества, выводит токсины из определенных веществ и фильтрует кровь, поступающую из пищеварительного тракта через вену, прежде чем она присоединится к венозному кровотоку из других частей тела.Кислородная кровь достигает печени через артерию.

    Большая часть массы печени находится в верхней правой части живота, прямо под грудной клеткой.

    Печень играет множество ролей в пищеварении и фильтрации крови, в том числе:

    • производит желчь
    • помогает организму отфильтровывать токсичные вещества, включая алкоголь, наркотики и вредные метаболиты
    • регулирует уровни в крови различных важных химических веществ, включая аминокислоты
    • создание холестерина
    • удаление некоторых бактерий из крови
    • создание некоторых иммунных факторов
    • удаление билирубина из крови
    • регулирование процесса свертывания крови, чтобы человек не слишком сильно кровоточил и не развивался опасно сгустки крови

    Печень взаимодействует с желчным пузырем, доставляя желчь в тонкий кишечник.Печень выбрасывает желчь в желчный пузырь, который затем накапливает и высвобождает желчь, когда она необходима организму для улучшения пищеварения.

    Человек может жить без части печени, но сама печень жизненно важна.

    Узнайте больше о печени здесь.

    Почки

    Почки - это пара органов в форме фасоли, каждый размером с кулак. Они расположены по обе стороны спины, защищены внутренней частью нижней части грудной клетки.Они помогают фильтровать кровь и выводить шлаки из организма.

    Кровь течет из почечной артерии в почки. Каждая почка содержит около миллиона крошечных единиц фильтрации, известных как нефроны. Они помогают фильтровать отходы в мочу, а затем возвращать отфильтрованную кровь в организм через почечную вену.

    Почки также производят мочу, когда удаляют отходы из крови. Моча выходит из почек через мочеточники, а затем спускается в мочевой пузырь.

    Человек может жить только с одной почкой.Когда человек страдает тяжелой почечной недостаточностью, диализ может фильтровать кровь до тех пор, пока он не получит трансплантат почки или пока почка не восстановит какую-либо функцию. Некоторым людям необходим длительный гемодиализ.

    Узнайте больше о почках здесь.

    Не жизненно важные органы - это те органы, без которых человек может выжить. Однако это не означает, что состояния, поражающие эти органы, никогда не бывают опасными для жизни или опасными. Многие инфекции и рак нежизнеспособных органов опасны для жизни, особенно без своевременного лечения.

    Повреждения не жизненно важных органов могут также повлиять на жизненно важные органы, например, когда желчный камень нарушает функцию печени.

    В нижеследующих разделах более подробно описаны не жизненно важные органы тела.

    Желчный пузырь

    Маленький желчный пузырь грушевидной формы расположен в правом верхнем квадранте брюшной полости, прямо под печенью. Он содержит холестерин, соли желчных кислот, желчь и билирубин.

    У здорового человека печень выделяет желчь в желчный пузырь, которая накапливается в желчном пузыре и затем высвобождается, чтобы по общему желчному протоку попасть в тонкий кишечник, чтобы способствовать пищеварению.

    Однако у некоторых людей образуются желчные камни, которые блокируют желчный пузырь или желчное дерево, вызывая сильную боль и нарушая пищеварение. Кроме того, иногда это может мешать работе печени или поджелудочной железы.

    Узнайте здесь о некоторых потенциальных проблемах с желчным пузырем.

    Поджелудочная железа

    Поджелудочная железа, расположенная в верхней левой части брюшной полости, выполняет две важные функции: она функционирует как экзокринная железа и как эндокринная железа.

    Как экзокринная железа, поджелудочная железа вырабатывает ферменты, необходимые человеку для переваривания пищи и преобразования ее в энергию.Эти ферменты включают амилазу, липазу, трипсин и химотрипсин.

    Выступая в роли эндокринной железы, поджелудочная железа также вырабатывает и выделяет инсулин, который помогает организму удалять глюкозу из крови и преобразовывать ее в энергию.

    Проблемы с инсулином могут привести к опасно высокому уровню глюкозы в крови и развитию диабета.

    Поджелудочная железа также производит и выделяет глюкагон, который повышает уровень глюкозы в крови.

    Главный проток поджелудочной железы соединяется с общим желчным протоком, который оттекает от печени и желчного пузыря.Таким образом, проблемы с желчным деревом, печенью или желчным пузырем также могут повлиять на поджелудочную железу.

    Узнайте больше о поджелудочной железе здесь.

    Желудок

    Желудок - это орган J-образной формы в верхней части живота.

    Пища начинает свой путь к желудку вскоре после того, как человек проглотил. Пища движется вниз из горла в пищевод. Желудок расположен в конце пищевода.

    Мышцы желудка помогают ему расщеплять и переваривать пищу.Внутри его просвета определенные области желудка также вырабатывают ферменты, которые помогают переваривать пищу. Например, фермент пепсин расщепляет белки, превращая их в аминокислоты.

    Желудок также помогает хранить химус, пока он не попадет в кишечник. Химус относится к пище, смешанной с желудочными выделениями.

    Анатомы обычно делят желудок на пять частей. Это:

    • Кардия: Расположенная непосредственно под пищеводом, эта часть желудка включает сердечный сфинктер.Сфинктер предотвращает попадание пищи обратно в пищевод или в рот.
    • Глазное дно: Расположено слева от кардии и под диафрагмой.
    • Тело: Пища начинает расщепляться в организме, который также является самой большой частью желудка.
    • Антральный отдел: Это нижняя часть желудка. Он содержит частично переваренную пищу до того, как попадает в тонкий кишечник.
    • Привратник: Эта часть желудка соединяется с тонкой кишкой.Он включает в себя мышцу, называемую пилорическим сфинктером, которая контролирует, когда и сколько содержимого желудка попадает в тонкий кишечник.

    Кишечник

    Кишечник - это группа трубок, которые помогают фильтровать отходы, поглощать воду и некоторые электролиты и переваривать пищу.

    Частично переваренная пища сначала проходит через тонкий кишечник, который состоит из трех частей: двенадцатиперстной кишки, тощей кишки и подвздошной кишки. Здесь происходит большая часть переваривания и всасывания пищи.

    Пища затем превращается в фекалии, когда она перемещается внутри и через толстую кишку. Это начинается со слепой кишки, распространяется на остальную часть толстой кишки и заканчивается прямой кишкой. Прямая кишка - это последняя остановка для кала, прежде чем произойдет изгнание из ануса.

    Врачи обычно перечисляют десятки органов, хотя определение органа варьируется от эксперта к эксперту. Большинство органов играют роль в системах органов, которые работают вместе для выполнения определенных функций.

    В нижеследующих разделах более подробно описаны системы органов тела.

    Нервная система

    Головной и спинной мозг образуют центральную нервную систему, которая обрабатывает и отправляет нервные сигналы, интерпретирует информацию и производит сознательные мысли.

    Часть нервной системы, которая взаимодействует с центральной нервной системой, называется периферической нервной системой. В целом периферическая и центральная нервные системы также включают обширную сеть нейронов. Эти волокнистые пучки, расположенные по всему телу, передают информацию об ощущениях, температуре и боли.

    Нервная система помогает организму регулировать все функции, включая все остальные системы органов.

    Например, желудок выделяет гормон грелин, который сигнализирует мозгу, что пора есть. Это вызывает чувство голода и побуждает человека есть, что приводит к началу процесса пищеварения.

    Нервная система интегрируется практически со всеми остальными частями тела. Например, нервные волокна руки сообщают мозгу о травме в этой области.

    Между тем нервы на коже передают информацию о внешней температуре. Это может заставить мозг инициировать непроизвольные реакции, контролирующие температуру тела, такие как потоотделение или дрожь.

    Также другие нервы взаимодействуют с мышцами, что помогает координировать движения.

    Узнайте больше о центральной нервной системе здесь.

    Репродуктивная система

    Репродуктивная система включает органы, которые позволяют человеку воспроизводить и испытывать сексуальное удовольствие.У женщин репродуктивная система также поддерживает рост плода.

    Репродуктивная система тесно взаимодействует с другими органами и системами органов. Например, гипоталамус и гипофиз помогают регулировать производство и выброс гормонов, таких как эстроген и тестостерон.

    Органы мужской репродуктивной системы включают:

    • семенники
    • придаток яичка
    • семявыносящий проток
    • семявыбрасывающие протоки
    • предстательную железу
    • семенные пузырьки
    • половой член
    • 000 бульбоуретральные железы
    • Органы женской репродуктивной системы включают:

      • молочные железы в груди
      • яичники
      • маточные трубы
      • матку
      • влагалище
      • вульву
      • клитор
      • систему различных желез, таких как как бартолиновые железы, которые помогают смазывать влагалище
      • шейку матки

      Кожа

      Кожа - самый большой орган тела.Это часть покровной системы, которая включает кожу, волосы, ногти и жир.

      Покровная система помогает регулировать температуру тела, защищать организм от опасных патогенов, вырабатывать витамин D от солнечного света и обеспечивать сенсорную информацию.

      Кожа состоит из трех слоев:

      • Эпидермис: Это внешний слой кожи. Он содержит три типа ячеек. Плоскоклеточные клетки - это внешний слой кожи, который тело постоянно сбрасывает. Базальные клетки - следующий слой, расположенный под плоскоклеточными клетками.Меланоциты производят меланин, пигмент кожи. Чем больше меланина вырабатывают меланоциты, тем темнее кожа человека.
      • Дерма: Это средний слой кожи, расположенный под эпидермисом. Он содержит кровеносные сосуды, лимфатические сосуды, волосяные фолликулы, потовые железы, нервы, сальные железы и фибробласты. Гибкий белок, называемый коллагеном, скрепляет дерму.
      • Подкожно-жировой слой: Это самый глубокий слой кожи. Он помогает сохранять тепло тела и снижает риск получения травм при сильных ударах.

      Мышечная система

      Мышечная система включает в себя обширную сеть мышц. Есть три типа мышц:

      • Скелетные мышцы: Это произвольные мышцы, что означает, что человек может решить, когда их двигать. Бицепсы и трицепсы являются примерами скелетных мышц.
      • Сердечные мышцы: Это непроизвольные мышцы, которые помогают сердцу перекачивать кровь.
      • Гладкие мышцы: Это тоже непроизвольные мышцы.Гладкие мышцы выстилают мочевой пузырь, кишечник и желудок.

      Эндокринная система

      Эндокринная система - это сеть желез по всему телу. Эти железы выделяют важные химические вещества, называемые гормонами, которые помогают регулировать функцию практически каждого органа и системы органов в организме.

      Например, прогестерон помогает регулировать менструальный цикл и играет важную роль в поддержании беременности.

      Эндокринная система включает несколько основных желез, в том числе:

      • поджелудочную железу
      • щитовидную
      • надпочечники
      • гипофиз
      • паращитовидную железу
      • щитовидную железу
      • гипоталамус
      • шишковидную железу
      • яичники
      • семенники

      Иммунная система

      Иммунная система помогает организму предотвращать инфекции и борется с ними, когда они действительно возникают.

      Многие органы играют роль в иммунной системе. Например, кожа предотвращает попадание опасных патогенов в организм, а слюнные железы выделяют слюну, которая может помочь разрушить некоторые опасные источники инфекции в пище.

      Лимфатическая система играет ключевую роль в иммунной системе, высвобождая лимфоциты, которые борются с болезнями. По всему телу много лимфатических узлов. Некоторые люди замечают, что их лимфатические узлы увеличиваются, когда они заболевают.

      Пищеварительная система

      Пищеварительная система - это группа органов, которые переваривают пищу, а также различные структуры внутри, которые выделяют вещества, способствующие пищеварению и всасыванию.

      Включает:

      • рот
      • пищевод
      • слюнные железы
      • желчный пузырь
      • печень
      • поджелудочную железу
      • желудок
      • тонкий и толстый кишечник
      • аппендикс
      • прямую кишку
      • анус

      Система кровообращения

      Система кровообращения включает в себя множество кровеносных сосудов, по которым кровь циркулирует по всему телу. Он включает в себя вены, артерии, капилляры, венулы и артериолы.

      Лимфатическая система также является частью системы кровообращения. Он помогает поддерживать баланс жидкости в организме, собирая лишнюю жидкость и другие частицы из крови. В этой системе присутствуют лимфатические узлы.

      Каждый орган тела представляет собой сложную систему, состоящую из множества более мелких частей. Многие органы также зависят от нескольких других частей тела. Например, чтобы правильно дышать, легкие должны работать с носом, ртом, горлом, дыхательным горлом и пазухами.

      Такая сложность каждого органа и системы органов означает, что некоторые врачи предпочитают специализироваться на одном органе или системе органов.Например, кардиологи лечат проблемы с сердцем, а пульмонологи изучают легкие.

      Любому, кто считает, что у него проблема с одним из органов или систем органов, следует обратиться к специалисту или попросить направление у поставщика медицинских услуг.

      .

      Смотрите также

 
 
© 2020 Спортивный клуб "Канку". Все права защищены.