Нахождение в клетке углеводов


углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.

Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.

 

Общая формула углеводов:

Cn(h3O)m.

Углеводы состоят из углерода, водорода и кислорода.

В состав производных углеводов могут входить и другие элементы.

 

Растворимые в воде углеводы. Моносахариды и дисахариды

Пример:

из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Глюкоза — основной источник энергии для клеточного дыхания.

Фруктоза — составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.

Пример:

сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:

сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.

Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.

Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Нерастворимые в воде полисахариды

Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

 

Пример:

полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.

Целлюлоза нерастворима в воде и обладает высокой прочностью.

Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Гликоген — запасное вещество животной клетки.

Известны также сложные полисахариды, выполняющие структурные функции в опорных тканях животных (они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность).

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://www.bestreferat.ru/referat-100195.html

Углеводы как органические молекулы

Углеводы – это органические молекулы, которые содержат углерод, водород и кислород в мольном соотношении 1:2:1. Элементы в них объединяются в карбонильную и карбоксильную группы. Их общая формула (CH2O) n.


Так как первые изученные углеводы содержали водорода и кислорода столько же, сколько и в молекуле воды, они и получили своё название (углерод + вода). Вместе с тем есть молекулы, у которых соотношение указанных в формуле химических элементов иное, а некоторые, кроме того, содержат атомы азота, фосфора или серы, но подробная классификация углеводов рассматривается ниже. Источником углеводов является растения, там они синтезируются в процессе фотосинтеза.

Так как углеводы содержат много углеводородных связей (C-H), высвобождающих энергию при окислении, они хорошо подходят для хранения энергии. Эти вещества входят в состав всех живых организмов. В клетках животных их содержание не превышает 10 % сухой массы, в клетках растений их значительно больше – до 90 %.

Классификация углеводов

Углеводы существуют в нескольких формах: моносахаридов, олигосахаридов (в том числе дисахаридов) и полисахаридов.

Углеводы моносахариды

Самые простые углеводы – моносахариды (греч. μόνος «единственный», лат. saccharum «сахар»), или простые сахара. Могут включать от 3 атомов углерода, но те, что играют роль в запасе энергии, содержат 6 атомов углерода:  C6H12O6 или (CH2O)6.

Структура моносахаридов.

Свойства моносахаридов:

  • бесцветность;
  • твёрдость кристаллической решётки;
  • хорошая растворимость в воде;
  • способность к кристаллизации;
  • сладкий вкус,
  • представление в форме α и β-изомеров.

По количеству атомов углерода в составе молекул, моносахариды делятся на несколько групп:

  • триозы (C3),
  • тетрозы (C4),
  • пентозы (C5),
  • гексозы (C6),
  • гептозы (C7).

Важнейшими из них являются пентозы и гексозы.

Из тетроз важной является эритроза – один из промежуточных продуктов фотосинтеза растений.

Широко распространены в живом мире пентозы (пятиуглеродные сахара). Эта группа углеводов включает такие важные вещества как рибоза (C5H10O4) и дезоксирибоза (C5H10O5) – сахара, входящие в состав нуклеотидов – мономеров нуклеиновых кислот (ДНК и РНК). Дезоксирибоза отличается от рибозы тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу.

Из гексоз наиболее распространены глюкоза, фруктоза и галактоза. Это стериоизомеры с общей формулой C6H12O6.

Глюкоза – виноградный сахар, в свободном состоянии встречается как в растениях, так и в организмах животных. В зависимости от ориентации карбонильной группы (C = O) при замкнутом кольце, глюкоза может существовать в двух различных формах: альфа (α) и бета (β). У α-глюкозы гидроксильная группа расположена под плоскостью кольца при первом атоме углерода, а у β-глюкозы над плоскостью. Глюкоза — это:

  • важнейший источник энергии для всех видов работ в клетке;
  • мономер многих олиго- и полисахаридов;
  • необходимый компонент крови. Снижение её концентрации ведёт к нарушению работы нервных и мышечных клеток, что может сопровождаться судорогами и обмороком. Уровень содержания глюкозы в крови регулируется нервно-гуморальной системой;
  • составная часть почти всех тканей и органов, там она регулирует осмотическое давление;
  • помощник печени в выполнении барьерной роли против токсинов.

Фруктоза тоже очень распространена в природе. Отличается от глюкозы положением карбонильного углерода (C = O). Служит мономером олигосахаридов. Большая её часть находится в плодах, поэтому её ещё называют фруктовым сахаром. Много фруктозы в сахарной свёкле и мёде.

Путь её распада в организме короче, что имеет большое значение в питании больных сахарным диабетом, когда глюкоза слабо усваивается клетками.

Мёд, несмотря на многочисленные советы употреблять его вместо сахара, не является идеальным источником углеводов. Он содержит сахар в чистом виде.

Мёд образуется при ферментативном гидролизе цветочного нектара в пищеварительном тракте пчелы и содержит примерно равные количества свободных глюкозы, фруктозы и дисахарид сахарозу.

Сахар, приносящий пользу, находится в молодых овощах, ягодах, фруктах. Вредный для питания сахар – булочки, торты, пирожные, печенья, сладкие газировки, мороженое. В день в идеале можно съедать 50 г сладкого во время обеда или на полдник в качестве десерта.


 

Галактоза — пространственный изомер глюкозы, отличающийся только расположением гидроксильной группы и водорода около четвёртого атома углерода. Содержится в животных, растениях и некоторых микроорганизмах. Она входит в состав лактозы — молочного сахара, а также в состав некоторых полисахаридов, например лактулозы. В печени и в других органах галактоза превращается в глюкозу.


Различия в структуре этих изомеров влияют на их функции. Их можно различить уже на вкус: фруктоза, например, намного слаще глюкозы. От строения их кольца или цепи зависит и способность быть частью какого-либо полимера.

Углеводы олигосахариды

Олигосахариды (от греч. ὀλίγος — немногий) — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до 10) молекулами моносахаридов. В зависимости от числа молекул моносахаридов, различают: дисахариды, трисахариды, тетрасахариды и т. д. Наиболее распространены среди них дисахариды. Свойства олигосахаридов:

  • растворяются в воде;
  • мало растворяются в низших спиртах;
  • почти не растворяются в других обычных растворителях;
  • белые или бесцветные;
  • кристаллизуются, но не все, некоторые существуют в форме некристаллических сиропов;
  • их сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов.

Связь, образующаяся между двумя моносахаридами, называется гликозидной (тип ковалентной связи, реакция конденсации).

Образование гликозидных связей
Углеводы дисахариды

В растениях и многих других организмах моносахариды трансформируется в дисахариды — транспортную форму, предназначенную для удобства перемещения внутри организма. В таком виде она труднее расщепляется и может быть доставлена в нужные места.

Дисахариды, образуется путём связывания двух моносахаридов (др. греч. δuο — два и σaκχαρον — сахар) гликозидной связью. Ферменты, способные разорвать эту связь присутствуют, как правило, только в тканях, которые используют глюкозу. Транспортные формы различаются в зависимости от того из каких моносахаридов состоят данные дисахариды. Кроме глюкозы они могут включать фруктозу и галактозу.

 

При соединении остатка глюкозы с её структурным изомером фруктозой образуется дисахарид сахароза (тростниковый, или свекловичный сахар). Сахароза — самая распространённая форма транспортных углеводов, которая хранится в клетках растений (в семенах, ягодах, корнях, клубнях, плодах). Играет важную роль в питании животных и человека. В растениях сахароза служит растворимым резервным углеводом, а также транспортной формой продуктов фотосинтеза, которая легко переносится по растению.

Это привычный нам бытовой сахар, который в промышленности вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свёклы (корнеплоды — до 20%).

Уборка сахарного тростника
Автор: Siebrand

Связывание глюкозы со стериоизомером галактозой приводит к появлению дисахарида лактозы, или молочного сахара. Она есть в молоке всех млекопитающих (2-8,5%), при её помощи звери и человек обеспечивают энергией своё потомство. Взрослые значительно уменьшают потребление молока, так как в их организме нет фермента, нужного для расщепления лактозы. Лактоза используется в микробиологической промышленности для приготовления питательной среды.

Мальтоза, или солодовый сахар — дисахарид, состоящий из двух остатков глюкозы. Концентрируется в прорастающих семенах злаков, в томатах и нектаре некоторых растений. Это основной структурный элемент крахмала и гликогена. Мальтоза гидролизируется на две молекулы глюкозы под действием фермента мальтазы.

Углеводы полисахариды

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (нескольких десятков и более) молекул моносахаридов. Полисахариды (от греч. полис — много) могут включать остатки одинаковых или разных моносахаридов.

Свойства полисахаридов:

  • не растворяются или плохо растворяются в воде;
  • не образуют ясно оформленных кристаллов;
  • не имеют сладкого вкуса.

Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство из них не способны переварить целлюлозу или другие полисахариды, такие как хитин. Эти углеводы могут усваиваться только некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, так как они улучшают пищеварение и способствуют лучшей перистальтике кишечника. Основная функция пищевых волокон — способствовать всасыванию других питательных веществ.

Полисахариды различаются между собой составом мономеров, длиной и степенью разветвленности цепей. Они могут иметь линейную неразветвленную (целлюлоза, хитин), разветвленную (гликоген) и смешанную структуру (крахмал представляет собой смесь полисахаридов — примерно на 80 % (по массе) он состоит из разветвленного амилопектина и на 20 % из линейного полисахарида амилозы).

В функциональном отношении различают полисахариды резервного, структурного и защитного назначения. Типичные резервные полисахариды — крахмал и гликоген. К структурным полисахаридам относят целлюлозу (клетчатку). Защитную функцию у животных обеспечивают гепарин и гиалуроновая кислота.

Крахмал и гликоген

Крахмал и гликоген запасают метаболическую энергию.

Крахмал (C6H10O5)n — полимер, мономером которого является α-глюкоза. Состоит из смеси других полисахаридов — амилозы и амилопектина. Амилоза имеет вид длинной цепочки, связанной в спираль, именно такая конфигурация обеспечивает синюю окраску растворимого крахмала при добавлении йода. Амилопектин — древовидно разветвлённая цепь, он в присутствии йода окрашиваются в коричневый цвет. Крахмал — основной резервный углевод растений, являющийся одним из продуктов фотосинтеза. Накапливается в хлоропластах листьев, семенах, клубнях, корневищах, луковицах, откладывается в клетках в виде крахмальных зёрен в специальных органеллых — амилопластах. Содержание крахмала:

  • в зерновках риса — до 86%;
  • пшеницы — до 75%;
  • в клубнях картофеля — до 25%.

Крахмал — основной углевод пищи человека, его расщепляет фермент амилаза. Крахмальные зёрна практически не растворяются в воде, но амилоза набухает при её нагревании, тогда как амилопектин не изменяется даже при очень длительном кипячении.

Гликоген (C6H10O5)n — полисахарид, состоящий из 30 000 остатков α-глюкозы. Его цепочки ветвятся сильнее, чем у крахмала. По типу ветвления он похож на компонент крахмала амилопектин, поэтому его часто называют животным крахмалом. Он не даёт синего окрашивания при контакте с йодом. Гликоген — это запасной углевод животных. Накапливается в печени (до 20%) и в мышцах (4%), в небольшом количестве он найден в почках, клетках мозга и лейкоцитах крови. Чаще всего используется как источник глюкозы для восполнения её запасов в крови. Есть гликоген и в клетках грибов, в том числе и дрожжей. В отличие от крахмала гликоген растворим при комнатной температуре.

Целлюлоза

Целлюлоза — полимер, в котором мономер глюкоза соединяется между собой по типу β. Это основной структурный полисахарид клеточной стенки растений, в нём аккумулируется около 50% всего углерода биосферы. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%.

Молекулы целлюлозы не ветвятся, а собираются в очень прочные волокна из параллельно уложенных цепочек, связанных в пучки водородными соединениями. Они нерастворимы в воде, внешне похожи на часть крахмала — амилозу, с одним отличием — цепи целлюлозы, соединённые по β типу в большинстве живых организмах не расщепляются, так как у них отсутствует нужный для этого фермент целлюлаза. Из-за того, что целлюлоза не может быть разорвана в пищеварительном тракте животных, она может работать как биологический структурный материал. Но некоторым жвачным, например, коровам, переваривать целлюлозу помогают симбиотические микроорганизмы.

Целлюлоза является пищей не только для коров, но и для грибов, микроорганизмов, некоторых протист и животных (термиты). Микроорганизмы, способные расщеплять целлюлозу, входят также в состав микрофлоры толстого кишечника человека.

Хитин

Хитин (фр. chitine, от др.-греч. χιτών: хитон — одежда, кожа, оболочка) — структурный полисахарид, найденный в кутикуле членистоногих и ряда других беспозвоночных (червей, кишечнополостных), клеточных оболочках некоторых грибов и протист. Кроме углерода, водорода и кислорода в его молекулах содержится азот (C8H13NO5)n, этим он отличается от целлюлозы. Состоит из остатков N-ацетилглюкозамина, связанных между собой β-гликозидными связями. Усваивать хитин способны немногие организмы, например некоторые бактерии. Но многие существа продуцируют фермент хитиназу, вероятно в качестве защиты от плесени.

Функции углеводов

В живых организмах углеводы выполняют различные функции, основные из них — энергетическая, запасающая и структурная.

  • Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов — углекислый газ и вода.

Важнейшая роль углеводов в энергетическом обмене живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет большое значение для анаэробов.

  • Запасающая функция. Полисахариды являются запасными питательными веществами, играя роль «хранилищ» энергии. Резервным углеводом растений является крахмал, животных и грибов — гликоген, бактерий — муреин (пептидогликан). При необходимости эти полисахариды расщепляются до глюкозы, которая служит основным источником энергии для большинства живых организмов.
  • Структурная функция. Углеводы используются в качестве строительного материала. Оболочки клеток растений на 20-40 % состоят из целлюлозы, которая обладает высокой прочностью. Поэтому они надежно защищают внутриклеточное содержимое и поддерживают форму клеток. Хитин является важным структурным компонентом наружного скелета членистоногих, кольчатых червей, клеточных оболочек грибов и некоторых протист.

 

Биологические функции углеводов
  • Олиго- и полисахариды входят в состав цитоплазматической мембраны клеток животных, образуя надмембранный комплекс — гликокаликс. Углеводные компоненты цитоплазматической мембраны выполняют рецепторную функцию: воспринимают сигналы из окружающей среды и передают их в клетку.
  • Метаболическая функция углеводов состоит в том, что в клетках живых организмов моносахариды являются основой для синтеза многих органических веществ — олиго- и полисахаридов, нуклеотидов, некоторых спиртов. Ряд веществ, образующихся в ходе расщепления молекул моносахаридов, используется клетками для синтеза аминокислот, жирных кислот и др.
  • Защитная. Они входят в состав слизей, предохраняющих кишечник, бронхи от механических повреждений, в состав репарина — вещества, предотвращающего свёртывание крови у человека.
  • Осмотическая. Углеводы участвуют в регуляции осмотического давления в организме.

 

Вам будет интересно

функции, классификация, продукты, строение, свойства, калорийность и норма в день

Содержание статьи:

  1. Что такое углеводы
  2. Функции углеводов в организме
  3. Классификация
  4. Простые углеводы
  5. Сложные углеводы
  6. Быстрые углеводы
  7. Медленные углеводы
  8. Строение углеводов
  9. Состав
  10. Свойства углеводов
  11. Переваривание
  12. Обмен углеводов в организме
  13. Продукты богатые углеводами
  14. Норма углеводов в день для организма
  15. Калорийность

Углеводы представляют собой натуральные органические вещества. В их формуле присутствуют углерод и вода. Благодаря этим элементам организм черпает энергию, которая требуется для поддержания нормальной работы. В зависимости от химической структуры углеводы бывают простыми и сложными.

Углеводы

Что такое углеводы

Углеводы - это основной ингредиент большинства пищевых продуктов, который служит источником энергии для человеческого организма. В зависимости от числа структурных единиц углеводы бывают простыми и сложными.

Первую категорию также называют быстрыми углеводами. Они являются легкоусвояемыми и приводят к быстрому увеличению содержания сахара в крови. Это значит, что для веществ характерен высокий гликемический индекс.

Такие элементы провоцируют нарушение метаболизма и становятся причиной увеличения массы тела. Систематическое употребление пищи, содержащей простые углеводы, не только приводит к ожирению, но и вызывает много других заболеваний.

Сложные углеводы, к которым относят крахмал и клетчатку, включают много связанных сахаридов. В их составе присутствует большое количество структурных элементов. Еда с такими углеводами считается очень полезной. В процессе переваривания она постепенно насыщает организм энергией. Это дает длительное чувство сытости.

Функции углеводов в организме

Ключевая функция углеводов в организме кроется в их трансформации в энергию. АТФ, который представляет собой универсальный источник энергии, содержит моносахарид рибозу. Формирование АТФ происходит вследствие гликолиза. Этот процесс заключается в окислении и распаде глюкозы на пировиноградную кислоту.

Гликолиз осуществляется в несколько стадий. Углеводы окисляются до воды и углекислого газа. Этот процесс сопровождается высвобождением энергии.

К основным функциям углеводов относят следующее:

  1. Структурная. Полисахариды представляют собой материал для опорных элементов. Целлюлоза, которая входит в структуру клеточных стенок, дает растениям жесткость. В составе грибных клеток присутствует хитин.
  2. Энергетическая. Углеводы представляют собой основной источник энергии. Расщепление 1 г углеводов позволяет высвободить 17,6 кДж энергии.
  3. Защитная. Из этих элементов состоят шипы и колючки растений.
  4. Запасающая. Углеводы запасаются в виде крахмала в структуре растений и гликогена у животных. При дефиците энергии эти вещества расщепляются до глюкозы.
  5. Осмотическая. Вещества способствуют регулированию осмотического давления.
  6. Рецепторная. Элементы присутствуют в составе клеточных рецепторов.

Отдельные углеводы формируют сложные структуры с белковыми элементами и липидами. В результате образуются гликопротеины и гликолипиды. Эти элементы присутствуют в составе мембран клеток.

Классификация углеводов

Классификация углеводов

Углеводы имеют множество разновидностей. Это обязательно стоит учитывать при составлении пищевого рациона. Классификация углеводов делится на простые и сложные или быстрые и медленные.

К простым или быстрым углеводам относят следующие:

  1. Моносахариды. В эту категорию входят галактоза, фруктоза, глюкоза. Данные компоненты присутствуют в ягодах, фруктах, меде. Такие вещества быстро усваиваются и резко увеличивают содержание сахара в крови. Как следствие, в тканях образуется гликоген, который требуется для энергии. При ее избытке вещества образуют жировые отложения. Чтобы избежать негативных последствий, количество моносахаридов должно составлять не больше 25-35 % общего объема углеводов, которые были съедены в течение дня.
  2. Дисахариды. К ним преимущественно относят сахарозу, которую включает обычный сахар, и мальтозу. Этот компонент присутствует в солоде, патоке, меде. Также он имеется в составе молочного сахара.

К сложным или медленным углеводам относят полисахариды. Эти вещества включают большое количество моносахаридов. Они усваиваются долгое время и обладают менее сладким вкусом, чем простые углеводы.
К основным полисахаридам относят следующее:

  1. Крахмал и гликоген. Эти вещества присутствуют в злаках, бобовых, картофеле, кукурузе.
  2. Клетчатка. Элемент содержится в крупах, семечках, овощах, фруктах, отрубях.
  3. Целлюлоза. Компонент включают салатные листья, яблоки, груши, морковь.
  4. Пектин. Вещество присутствует в моркови, капусте, цитрусовых фруктах, клубнике.
  5. Инулин. Элемент содержится в цикории, луке, ячмене, чесноке.

Основное достоинство сложных углеводов заключается в медленном насыщении организма. Благодаря этому чувство голода не возникает раньше времени.

Простые углеводы

Простые углеводы

Для этих углеводов характерна простая структура. Благодаря этому они быстро усваиваются в организме. При недостатке физических нагрузок вещества повышают содержание сахара в крови. После этого он быстро падает, что провоцирует чувство голода. Неистраченные углеводы трансформируются в жировые отложения. При этом их недостаток вызывает усталость и повышенную сонливость.

Простые углеводы делятся на 2 категории – моносахариды и дисахариды.

К моносахаридам относятся:

  • глюкоза - она входит в состав большинства фруктов и ягод. Также компонент присутствует в меде и зеленых фрагментах растений;
  • фруктоза - это вещество присутствует в меде, ягодах, фруктах. Также оно входит в семена отдельных растений;
  • галактоза - это единственный моносахарид, который имеет животное происхождение. Он входит в состав лактозы, или молочного сахара.

Наиболее значимыми для питания человека считаются дисахариды. В составе молекулы присутствует глюкоза. Вторым сахаром может быть фруктоза, галактоза или глюкоза.

Существуют такие виды дисахаридов:

  • сахароза - она включает глюкозу и фруктозу. В эту категорию входит сахар из тростника или свеклы;
  • мальтоза - вещество содержит 2 остатка глюкозы. Оно присутствует в солодковом сахаре;
  • лактоза - элемент включает глюкозу и галактозу и содержится в молоке млекопитающих.

Список полезных продуктов, в которых присутствуют быстрые углеводы:

При этом есть вредные продукты, которые следует полностью исключить.

К ним относятся:

  • выпечка из муки высшего сорта;
  • конфеты;
  • сладкие газированные напитки;
  • снеки;
  • спиртные напитки;
  • торты, вафли, печенье.

Сложные углеводы

Сложные углеводы

В основе этих продуктов лежат полисахариды – крахмал и целлюлоза. Такие вещества обеспечивают нормальное пищеварение и на долгое время насыщают человека.

К списку продуктов, которые содержат много сложных углеводов, относят следующее:

  • все овощи – исключением являются картофель и тыква;
  • цитрусовые фрукты;
  • ягоды;
  • яблоки и груши;
  • абрикосы;
  • пшено, перловка, гречка, овсянка;
  • бобовые.

Из напитков в эту категорию входят несладкий чай и кофе. Также немного сложных углеводов присутствует в мясе и рыбе. Они имеются в яйцах, кефире, твороге.

Быстрые углеводы

Быстрые углеводы

Быстрые углеводы считаются простыми и включают всего 1-2 молекулы:

  • 1 молекулу содержат моносахариды;
  • 2 молекулы присутствует в составе дисахаридов.

Для всех быстрых углеводов характерен высокий гликемический индекс. Он превышает 70. Такие вещества отличаются сладким вкусом и прекрасно растворяются в воде.

Расщепление простых углеводов начинается еще в полости рта. Они очень быстро проникают в кровь. Уже через несколько минут после употребления существенно увеличивается уровень глюкозы. При этом он держится на высокой отметке не более 30-40 минут. Затем так же внезапно снижается.

Быстрые углеводы требуются для восстановления запаса энергии после сложных физических нагрузок или стрессов. Они способствуют выведению человека из гипогликемической комы.

Однако постоянно употреблять такие вещества не следует. Это провоцирует истощение поджелудочной железы и заставляет ее функционировать в стрессовом режиме. Именно избыток простых углеводов провоцирует развитие сахарного диабета 2 типа. При употреблении простых углеводов на ночь они трансформируются в жиры.

К продуктам с высоким гликемическим индексом относят следующее:

  • сахар, мед;
  • запеченный картофель, пюре;
  • отварная морковь и тыква;
  • бананы, дыни, арбузы, ананасы;
  • кондитерские изделия;
  • финики;
  • хлебобулочные изделия.

Медленные углеводы

Медленные углеводы

Медленные углеводы также называются сложными. Они включают 3 и больше молекул. Потому для этих веществ характерно медленное расщепление. Обычно они всасываются в кишечнике. К сложным углеводам относят декстрин, крахмал, целлюлозу, гликоген, глюкоманнан.

Употребление медленных углеводов способствует плавному поступлению глюкозы в организм человека. При этом не наблюдается пиков или скачков. Именно сложные углеводы насыщают человека на долгое время, поддерживают стабильное настроение и делают более уравновешенным.

Гликемический индекс таких продуктов находится в пределах 0-40.

К ним стоит отнести следующее:

  • макароны из твердых сортов пшеницы;
  • коричневый рис, ячмень, перловка, гречка, пшено;
  • бобовые;
  • фрукты – персики, апельсины, вишни, яблоки, груши;
  • овощи и зелень – лук, шпинат, кабачки, перец, томаты, капуста;
  • грибы.

Строение углеводов

Строение углеводов

Строение углеводов включает несколько карбонильных и гидроксильных групп.

В зависимости от структуры вещества делят на 3 категории:

  • моносахариды;
  • олигосахариды;
  • полисахариды.

Моносахариды представляют собой простейшие сахара, которые включают всего 1 молекулу. Они имеют несколько групп, которые отличаются по количеству атомов углерода в молекуле. Моносахариды, в составе которых присутствует 3 атома углерода, называют триозами. Если в составе присутствует 5 атомов, их именуют пентозами, если 6 – гексозами.

Наиболее ценными для живых организмов считаются пентозы, которые присутствуют в составе нуклеиновых кислот. Также большое значение имеют гексозы, из которых состоят полисахариды.

Олигосахариды содержат 2-10 структурных элементов.

В зависимости от количества выделяют:

  • диозы;
  • триозы;
  • тетраозы;
  • пентасахариды;
  • гексасахариды.

Самыми значимыми считаются дисахариды, к которым относятся сахароза, мальтоза и лактоза, а также трисахариды. В эту категорию входят мелицитоза, рафиноза, мальтотриоза.

Олисахариды могут содержать однородные и неоднородные структуры.

В зависимости от этого выделяют следующие виды:

  • гомоолигосахариды – все молекулы обладают одинаковым строением;
  • гетероолигосахариды – молекулы отличаются по структуре.

Самыми сложными углеводами считаются полисахариды. Они включают множество моносахаридов – от 10 до нескольких тысяч.

К таким веществам относят следующее:

  • крахмал;
  • хитин;
  • гликоген;
  • целлюлоза.

Полисахариды имеют более жесткую структуру, чем олигосахариды и моносахариды. Они не растворяются в воде и не имеют сладкого вкуса.

Состав углеводов

Состав углеводов

Состав углеводов делят на следующие категории:

  1. Моносахариды – включают 1 мономерную единицу и не гидролизуются с появлением более простых углеводов. Мономеры отличаются разнообразием. Это обусловлено разницей в структуре. Обычно моносахариды живых организмов представляют собой кольцевые углеродные цепи, которые включают 5 или 6 атомов углерода. Самыми важными моносахаридами считаются рибоза и дезоксирибоза, которые присутствуют в составе нуклеиновых кислот. Также к ним относят глюкозу как источник энергии и фруктозу.
  2. Дисахариды – включают 2 мономерных единицы. Можно сказать, что они состоят из 2 моносахаридов. Вещества объединяются через гидроксильные группы. При этом происходит отщепление воды. Самым известным дисахаридом считается сахароза. Ее молекула включает остатки глюкозы и фруктозы. 2 остатка глюкозы входит в состав мальтозы.
  3. Полисахариды – включают больше 10 мономерных единиц. В эту категорию входят крахмал, хитин, целлюлоза и т.д. Крахмал и гликоген скапливаются в организмах как запасной питательный элемент. Крахмал имеет менее разветвленную структуру, чем гликоген. Целлюлоза формирует стенки клеток растений. За счет этого она реализует структурную и защитную функции. Аналогичные задачи решает хитин у грибов и животных.

Свойства углеводов

К основным свойствам углеводов стоит отнести следующее:

  1. Молекулярная масса. Среди углеводов можно встретить весьма простые элементы, молекулярная масса которых составляет примерно 200, и гигантские полимеры. Их молекулярная масса достигает нескольких миллионов.
  2. Растворимость в воде. Моносахариды легко растворяются в воде и образуют сиропы.
  3. Окисление. Этот процесс приводит к получению соответствующих кислот. К примеру, окисление глюкозы аммиачным раствором гидрата окиси серебра приводит к формированию глюконовой кислоты.
  4. Восстановление. При восстановлении сахаров удается получить многоатомные спирты. В роли восстановителя выступает водород в никеле, алюмогидрид лития и т.д.
  5. Алкилирование. Под этим термином понимают образование простых эфиров.
  6. Ацилирование. В это понятие включают образование сложных эфиров.

Переваривание углеводов

Переваривание углеводов

Из углеводов в человеческом организме преимущественно перевариваются полисахариды – крахмал из растительных продуктов и гликоген, который присутствует в животной пище.

Полисахариды расщепляются пищеварительными ферментами до структурных блоков – свободной D-глюкозы. Этот процесс происходит под воздействием амилазы слюны и сопровождается формированием смеси из мальтозы, глюкозы и олигосахаридов.

Переваривание углеводов продолжается и заканчивается в тонком кишечнике. На этот процесс влияет амилаза поджелудочной железы, которая попадает в двенадцатиперстную кишку.

Гидролиз дисахаридов запускают ферменты, которые присутствуют в наружном слое клеток эпителия, выстилающих тонкий кишечник. В эпителиальных клетках тонкого кишечника происходит частичная трансформация D-фруктозы, D-галактозы, D-маннозы в D-глюкозу. Смесь простых гексоз поглощается клетками эпителия и с током крови попадает в печень.

Обмен углеводов в организме

Обмен углеводов в организме

В основе обмена углеводов в организме человека, лежат ниже описанные процессы:

  1. Мозг не имеет запаса гликогена, потому ему постоянно требуется глюкоза. Углеводы являются единственным источником, который помогает покрывать энергетические расходы мозга. Именно мозговая ткань поглощает 70 % глюкозы, которая выделяется печенью.
  2. Мышечные ткани при активной работе получают из крови большое количество глюкозы. В них это вещество трансформируется в гликоген. При распаде гликогена появляется достаточное количество энергии для сокращения мышц.
  3. Содержание глюкозы в крови регулируют гормоны – глюкагон, соматотропин, кортизол, инсулин, адреналин. Инсулин способствует снижению содержания глюкозы в крови при ее повышении, упрощает ее попадание в клетки и обеспечивает отложение вещества в тканях в виде гликогена. При уменьшении параметров глюкозы в крови соматотропин, кортизол, адреналин и глюкагон тормозят захват глюкозы клетками. За счет этого гликоген трансформируется в глюкозу.

Продукты богатые углеводами

Продукты богатые углеводами

Ниже описаны продукты, богатые углеводами в больших количествах:

  1. Хлеб. Важным источником таких веществ, считается пшеничная мука. При этом стоит учитывать, что хлеб нужно употреблять в меру. В продукте из цельных зерен, помимо крахмала, присутствуют белки, минералы, витамины, жиры. Эти вещества очень полезны.
  2. Рис. В составе риса присутствует много углеводов и витаминов группы В. При этом диетологи советуют отдавать предпочтение нешлифованным сортам.
  3. Бобовые. Такие продукты отличаются высокой пищевой ценностью. Для них характерна твердая целлюлозная мембрана, поэтому важно уделить внимание правильному способу приготовления.
  4. Картофель. Этот продукт содержит чуть меньше углеводов – около 20 %. Оставшуюся часть занимает вода. Помимо этого, в составе имеются витамины и минералы.
  5. Зеленые овощи. Помимо сложных углеводов, такие продукты включают много витаминов. Особенно полезно есть овощи в свежем виде. Предпочтение нужно отдавать салату, перцу, зеленой фасоли, молодому горошку, капусте. Обязательно нужно употреблять шпинат, поскольку он содержит много железа.

Норма углеводов в день для организма

Норма углеводов в день для организма

Необходимость в углеводах зависит от интенсивности интеллектуальных и физических нагрузок. В среднем норма углеводов в день для организма составляет 300-500 г. Около 20 % может приходиться на углеводы, которые легко усваиваются.

Пожилым людям стоит употреблять максимум 300 г углеводов в сутки. При этом количество простых элементов не должно быть больше 15-20 %.

При наличии лишнего веса и других патологиях количество углеводов стоит ограничивать. При этом делать это следует постепенно. Благодаря этому организм сможет адаптироваться к изменению обменных процессов. Ограничение стоит начинать с 200-250 г в сутки. Через неделю объем углеводов допустимо сократить до 100 г.

Если резко уменьшать количество углеводов в течение долгого периода времени, есть риск развития разных нарушений.

К ним относят следующее:

  • снижение уровня сахара в крови;
  • общая слабость;
  • сильное снижение интеллектуальной и физической активности;
  • потеря веса;
  • нарушение метаболизма;
  • повышенная сонливость;
  • головокружения;
  • головные боли;
  • тремор рук;
  • ощущение голода;
  • рак толстого кишечника;
  • запоры.

Неприятные симптомы удается устранить после употребления сахара или других сладких продуктов. Однако, есть их следует дозированно. Это поможет избежать увеличения массы тела.

Для организма также вреден и избыток углеводов, особенно простых. Он приводит к повышению уровня сахара в крови. Как следствие, часть веществ не используется и приводит к скоплению жировых отложений. Это провоцирует сахарный диабет, кариес, атеросклероз. Также есть риск метеоризма, ожирения, болезней сердца и сосудов.

Калорийность углеводов

Калорийность углеводов

Калорийность углеводов зависит от конкретного продукта. В среднем 1 г углеводов содержит 4,1 Ккал или 17 кДж.

Углеводы – важные элементы, которые обеспечивают человеческий организм энергией. При этом они делятся на 2 основные категории – простые и сложные. Чтобы избежать проблем со здоровьем, предпочтение стоит отдавать сложным углеводам.

Каковы функции углеводов в клетке?

Для нормального функционирования человеческому организму необходимы фундаментальные вещества, из которых и строятся все структурные части клетки, ткани и вообще весь организм. Это такие соединения, как:

  • белки;
  • липиды;
  • углеводы;
  • нуклеиновые кислоты.

Все они очень важны. Нельзя выделить среди них более или менее значимые, ведь недостаток любого ведет организм к неминуемой гибели. Рассмотрим, что представляют собой такие соединения, как углеводы, и какую роль играют они в клетке.

Общее понятие об углеводах

С точки зрения химии углеводами называются сложные кислородсодержащие органические соединения, состав которых выражается общей формулой Cn(H2O)m. При этом индексы должны быть либо равны, либо больше четырех.

Общее содержание углеводов в клетках живых организмов неодинаково. Так, растительные содержат их около 80%, тогда как животные - всего 2-3%. Сами по себе данные молекулы не зря получили такое название. Ведь оно как раз и отражает их атомарный состав: атомы углерода и молекулы воды, соединенные определенным образом.

Функции углеводов в клетке схожи для растений, животных и человека. Какие они, рассмотрим ниже. Кроме того, сами по себе данные соединения очень различны. Существует целая классификация, которая объединяет их все в одну группу и делит при этом на разные ветви в зависимости от строения и состава.

Каково же строение молекул этого класса? Ведь именно это и будет определять, каковы функции углеводов в клетке, какую роль они будут играть в ней. С химической точки зрения все рассматриваемые вещества - это альдегидоспирты. В состав их молекулы входит альдегидная группировка -СОН, а также спиртовые функциональные группы -ОН.

Существует несколько вариантов формул, с помощью которых можно изобразить строение углевода.

  1. Молекулярная - отражает качественный и количественный состав соединения, но не показывает связи между атомами и не говорит о строении и свойствах.
  2. Структурная. Полная или сокращенная, отражает порядок соединения атомов в молекуле, поэтому по ней можно спрогнозировать свойства.
  3. Проекционные формулы Фишера. Сочетание горизонтальных и вертикальных линий, пересечение которых совпадает с количеством стереоцентральных атомов углерода. При этом атом альдегидной группы показывается отдельно.
  4. Формулы Хеуорса. Используются для написания циклической структуры сахаров, как простых, так и сложных.

Глядя на последние две формулы, можно спрогнозировать функции углеводов в клетке. Ведь станут понятны их свойства, а отсюда и роль.

Химические свойства, которые проявляют сахара, объясняются наличием двух разных функциональных групп. Так, например, как и спирты многоатомные, углеводы способны давать качественную реакцию со свежеосажденным гидроксидом меди (II), а как альдегиды, окисляются до глюконовой кислоты в результате реакции серебряного зеркала.

Классификация углеводов

Так как рассматриваемых молекул большое разнообразие, то химиками была создана единая классификация, которая объединяет все схожие соединения в определенные группы. Так, выделяют следующие типы сахаров.

  1. Простые, или моносахариды. Содержат одну субъединицу в составе. Среди них выделяют пентозы, гексозы, гептозы и прочие. Самые важные и распространенные - рибоза, галактоза, глюкоза и фруктоза.
  2. Сложные. Состоят из нескольких субъединиц. Дисахариды - из двух, олигосахариды - от 2 до 10, полисахариды - больше 10. Самые важные среди них: сахароза, мальтоза, лактоза, крахмал, целлюлоза, гликоген и прочие.

Функции углеводов в клетке и организме очень важны, поэтому значение имеют все перечисленные варианты молекул. Для каждой из них отводится своя роль. Какие же это функции, рассмотрим ниже.

Функции углеводов в клетке

Их несколько. Однако существуют те, которые можно назвать основными, определяющими, и есть второстепенные. Чтобы лучше разобраться в данном вопросе, следует все их перечислить более структурировано и понятно. Так мы выясним функции углеводов в клетке. Таблица, приведенная ниже, нам в этом поможет.

ФункцияПример углевода
ЭнергетическаяГлюкоза, фруктоза, сахароза и прочие
Резервная или запасающаяКрахмал - у растений, гликоген - у животных
СтруктурнаяЦеллюлоза, полисахариды в совокупности с липидами
ЗащитнаяФормируют слизевые защитные слои - гетероолигосахариды
АнтикоагулянтнаяГепарин
Источники углеродаВсе углеводы

Очевидно, что переоценить значение рассматриваемых веществ сложно, так как именно они лежат в основе многих жизненно важных процессов. Рассмотрим некоторые функции углеводов в клетке более подробно.

Энергетическая функция

Одна из самых важных. Никакие продукты питания, потребляемые человеком, не способны дать ему такое количество килокалорий, как углеводы. Ведь именно 1 грамм данных веществ расщепляется с высвобождением 4,1 ккал (38,9 кДж) и 0,4 грамма воды. Такой выход способен обеспечить энергией работу всего организма.

Поэтому с уверенностью можно сказать, что углеводы в клетке выполняют функции поставщиков или источников силы, энергии, возможности к существованию, к осуществлению любого вида деятельности.

Давно замечено, что именно сладости, которые являются углеводами по большей части, способны быстро восстановить силы и придать энергии. Это касается не только физических тренировок, нагрузок, но и мыслительной деятельности. Ведь чем больше человек думает, решает, размышляет, учит и прочее, тем больше биохимических процессов происходит в его головном мозге. А для их осуществления нужна энергия. Где ее взять? Ответ простой: углеводы, вернее, продукты, которые их содержат, дадут ее.

Энергетическая функция, которую выполняют рассматриваемые соединения, позволяет не только двигаться и думать. Энергия нужна и на многие другие процессы:

  • построения структурных частей клетки;
  • газообмена;
  • пластического обмена;
  • выделения;
  • кровообращения и проч.

Все жизненно важные процессы требуют источника энергии для своего существования. Это и обеспечивают для живых существ углеводы.

Пластическая

Другое название данной функции - строительная, или структурная. Оно говорит само за себя. Углеводы принимают активное участие в построении важных макромолекул в организме, таких как:

  • ДНК.
  • РНК.
  • АТФ.
  • АДФ и прочие.

Именно благодаря рассматриваемым нами соединениям происходит формирование гликолипидов - одних из важнейших молекул клеточных мембран. Кроме того, из целлюлозы, то есть полисахарида, построена клеточная стенка растений. Она же - основная часть древесины.

Если же говорить о животных, то у членистоногих (ракообразных, пауков, клещей), протистов в состав клеточной мембраны входит хитин - полисахарид. Этот же компонент встречается в клетках грибов.

Таким образом, углеводы в клетке выполняют функции строительного материала и позволяют формироваться многим новым структурам и распадаться старым с высвобождением энергии.

Запасающая

Данная функция очень важна. Не вся энергия, поступающая в организм с пищей, тратится сразу. Часть остается заключенной в молекулах углеводов и откладывается в виде запасных питательных веществ.

У растений это крахмал, или инулин, в клеточной стенке - целлюлоза. У человека и животных - гликоген, или животный жир. Это происходит для того, чтобы всегда был запас энергии на случай голодания организма. Так, например, верблюды запасают жир не только для получения энергии при его расщеплении, а, по большей части, для высвобождения необходимого количества воды.

Защитная функция

Наряду с описанными выше, функции углеводов в клетке живых организмов еще и защитные. В этом легко убедиться, если проанализировать качественный состав смолы и камеди, образующейся в месте ранения структуры дерева. По своей химической природе это моносахариды и их производные.

Такая вязкая жидкость не позволяет посторонним патогенным организмам проникать внутрь дерева и вредить ему. Так получается, что осуществляется выполнение защитной функции углеводов.

Также примером данной функции могут служить такие образования у растений, как шипы, колючки. Это - мертвые клетки, которые состоят преимущественно из целлюлозы. Они защищают растение от поедания животными.

Основная функция углеводов в клетке

Из тех функций, что мы перечислили, безусловно, можно выделить самую главную. Ведь все же задача каждого продукта, содержащего рассматриваемые вещества, - усвоиться, расщепиться и дать организму необходимую для жизни энергию.

Поэтому основная функция углеводов в клетке - энергетическая. Без достаточного количества жизненных сил не сможет нормально протекать ни один процесс, как внутренний, так и наружный (движение, мимика лица и прочее). А больше, чем углеводы, ни одно вещество не может дать энергетический выход. Поэтому мы и обозначаем данную роль как самую важную и значимую.

Продукты, содержащие углеводы

Еще раз обобщим. Функции углеводов в клетке следующие:

  • энергетическая;
  • структурная;
  • запасающая;
  • защитная;
  • рецепторная;
  • теплоизоляционная;
  • каталитическая и прочие.

Какие же продукты необходимо употреблять, чтобы организм получал достаточное количество этих веществ каждый день? Небольшой список, в котором собраны только наиболее богатые углеводами продукты, поможет нам в этом разобраться.

  1. Растения, клубни которых богаты крахмалом (картофель, топинамбур и другие).
  2. Крупы (рис, перловка, гречка, пшено, овес, пшеница и прочие).
  3. Хлеб и все хлебобулочные изделия.
  4. Тростниковый или свекловичный сахар - это дисахарид в чистом виде.
  5. Макароны и все их разновидности.
  6. Мед - на 80% состоит из рацемической смеси глюкозы и фруктозы.
  7. Сладости - любые кондитерские изделия, которые сладки на вкус, являются источниками углеводов.

Однако злоупотреблять перечисленными продуктами также не стоит, ведь это может привести к излишнему отложению гликогена и, как следствие, ожирению, а также сахарному диабету.

Углеводы клеток, Биология

Углеводы, или сахара

Свое название углеводы получили ввиду того, что в их молекулах водород и кислород присутствуют в таком же соотношении, как и в воде. Их общая химическая формула Cnh3nOn может быть записана и так: Cn(H2O)n или (CH2O)n, где n > 3. Однако среди углеводов встречаются вещества, не соответствующие приведенной формуле, например рамноза (C6H12O5) и др.

Углеводы содержатся в каждой клетке. Особенно их много в клетках растений. В листьях, семенах, клубнях, плодах углеводы составляют до 90 % сухого остатка. В животных клетках углеводов содержится значительно меньше – около 1 % сухого остатка, за исключением клеток печени и мышц (до 5 %).

По химической организации сахара разделяют на простые и сложные. Простыми называют углеводы, образованные из однородных мономеров, а сложными – из мономеров различной природы.

Углеводы – это важнейшие органические вещества, имеющиеся у всех живых организмов без исключения.

Среди углеводов различают три основных класса соединений: моносахариды, олигосахариды и полисахариды.

Моносахариды

Простыми сахарами, или моносахаридами, называют низкомолекулярные органические соединения, углеродная цепь которых может содержать три и более атомов углерода. Моносахариды имеют неразветвленные углеродные цепочки, где при одном из атомов углерода находятся карбонильная группа (>C=O), а при остальных – по одной гидроксильной группе (–OH). Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид и называется альдозой. При любом другом положении этой группы он является кетоном и называется кетозой. Простейшие моносахариды – это трехуглеродные глицеральдегид (альдоза) и диоксиацетон (кетоза).

Примеры структурных формул альдоз и кетоз

В зависимости от количества атомов углерода в молекулах сахаров различают триозы, тетрозы, пентозы, гексозы и т. д. Моносахариды способны кристаллизоваться, но не гидролизуются с образованием более простых углеводов. Моносахариды являются первичными продуктами фотосинтеза, из них в результате ряда превращений образуются полимерные молекулы – полисахариды.

Среди моносахаридов наиболее важны гексозы и пентозы. Глюкоза (гексоза) является главным химическим компонентом клетки благодаря участию в создании многих полимерных сахаров и сложных соединений с белками и липидами. Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот. Сложные углеводы, соединяясь с белками, образуют гликопротеины, с жирами – гликолипиды. Гликопротеины (или гликопротеиды) присутствуют во всех тканях животных, растений, грибов и бактерий. К ним относятся многие белки плазмы крови, опорных тканей, некоторые ферменты, гормоны. Они входят в состав биологических мембран, участвуют в иммунологических реакциях. Гликолипиды также содержатся в тканях всех живых организмов, входят в состав мембран, выполняют структурные функции в фотосинтетических органоидах (хлоропластах).

В современной науке химические соединения принято обозначать не только брутто-формулой, которая показывает, какие атомы и в каком количестве входят в состав вещества, но используют также и структурные формулы. Они громоздки, но зато создают представление о расположении атомов и связей между ними. Например, сравнивая структурные формулы молекул глюкозы, фруктозы и галактозы, становится понятным различие свойств этих моносахаридов, хотя брутто-формула у них одна и та же – C6H12O6. Свойства органических соединений зависят также от того, при каком атоме углерода находится та или иная функциональная группа. Поэтому при написании их формул принята определенная нумерация атомов углерода.

Формы записи молекул сахаров: А – брутто-формула; Б – линейная формула; В – циклическая формула Нумерация атомов углерода в молекулах гексоз (А) и пентоз (Б)

Молекулы моносахаридов могут быть представлены линейной или кольцевой структурной формулой. Например, в водном растворе глюкоза может быть представлена и в той и в другой форме, но в состав полимерных соединений ее молекулы вступают только в кольцевой форме.

Моносахариды имеют большое число изомеров, различающихся лишь ориентацией их гидроксильных групп. Например, галактоза и манноза – изомеры. Два изомера, являющиеся зеркальным отражением друг друга, обладают одинаковым химическим строением и поэтому имеют одинаковые названия, различающиеся лишь приставкой D или L.

Все углеводы живых клеток являются D-изомерами.

Глюкоза, или виноградный сахар, – один из наиболее распространенных моносахаридов из группы гексоз, важнейший источник энергии в живых клетках, также является изомером. Глюкоза существует в двух основных формах: α-D-глюкопираноза (в крахмале) и β-D-глюкопираноза (в целлюлозе).

Две формы молекулы D-глюкозы

Олигосахариды

Моносахариды, в первую очередь гексозы и их производные, путем взаимодействия гидроксигруппы при атоме C1 с одной из гидроксигрупп соседнего мономерного звена (C2, C3, C4 или C6) образуют большое число различных олиго- и полисахаридов. Образующуюся связь между мономерами называют гликозидной. Олигосахаридами (от греч. oligos – немного) называют углеводы, образованные двумя или несколькими моносахаридами, соединенными между собой гликозидными связями. Дисахариды – наиболее распространенные представители олигосахаридов.

Образование дисахарида сахарозы Наиболее распространенные природные дисахариды: 1 – сахароза; 2 – лактоза; 3 – мальтоза

Полисахариды

Полисахариды в животных клетках чаще всего представлены в виде гликогена и хитина, а в растительных – в виде крахмала, целлюлозы, пектина и др. В полимерных углеводах роль мономеров выполняют обычно моносахариды глюкоза и фруктоза; их химический состав в обобщенном виде записывается формулой (C6H12O6)n, где n – количество мономеров, включенных в молекулу.

Полимерная молекула гликогена, состоящая из множества мономеров — молекул α-D-глюкозы

Наиболее распространенным полисахаридом является целлюлоза. В ней аккумулируется до 50 % всего углерода биосферы. Это линейный полимер, построенный из многочисленных остатков молекул глюкозы. Мономером целлюлозы является не моносахарид глюкоза, а дисахарид целлобиоза, состоящий из двух остатков β-D-глюкозы, соединенных β-гликозидной связью.

Целлюлоза может включать от 2000 до 25 000 остатков глюкозы. Уложенные параллельно друг другу, полимерные цепи целлюлозы формируют микрофибриллу диаметром 4–10 нм и длиной 1–5 мкм. Микрофибриллы целлюлозы совместно с другими полисахарами и белками образуют клеточную стенку клеток растений.

Основные структурные компоненты клеточной стенки растений: 1 – микрофибрилла целлюлозы; 2 – молекулы гемицеллюлозы; 3 – пектины; 4 – структурный белок

Целлюлоза очень устойчива к химическим воздействиям и при растяжении прочна как сталь. Эти свойства делают ее прекрасным строительным материалом, придающим прочность клеточной стенке растений.

Крахмал является полимером α-D-глюкозы. Его молекулы состоят из двух компонентов – амилозы и амилопектина. Линейные цепи амилозы включают в себя несколько тысяч остатков глюкозы и закручены в спираль. Амилопектин представлен в виде разветвленных цепей и содержит почти вдвое больше остатков глюкозы, чем амилоза. Хитин – тоже полисахарид, но образован мономерами β-D-ацетилглюкозамина. С ним по составу сходен муреин, образующий клеточные стенки многих бактерий.

Роль углеводов в клетке

Все углеводы являются важным источником энергии, так как при расщеплении их молекул выделяется энергия. Помимо энергетической углеводы выполняют важную строительную функцию, участвуя в образовании клеточных стенок, служат важным компонентом нуклеиновых кислот и разнообразных сложных соединений с белками и липидами.

Углеводы 🐲 СПАДИЛО.РУ

Теория для подготовки к блоку «Цитология»

Углеводы – органические вещества клетки, иначе называемые «сахаридами». В животных клетках содержание сахаридов может быть от 1% до 5%, а в некоторых растительных клетка даже достигает 90%.

Классификация углеводов
Моносахариды

Название «моносахариды» происходит от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’. Именно из моносахаридов составляются более сложные соединения углеводов. Моносахариды имеют следующие физические свойства: бесцветные кристаллы, легко растворимы в воде, имеют сладковатый вкус.

К моносахаридам относятся жизненно важные для всех живых организмов соединения: рибоза, дезоксирибоза, галактоза, глюкоза и фруктоза.

Рибоза входит в состав рибонуклеиновой кислоты и АТФ.

Дезоксирибоза входит в состав дезоксирибонуклеиновой кислоты.

Глюкоза является основой для таких полисахаридов как крахмал, гликоген и целлюлоза.

Галактоза – мономер лактозы, он же молочный сахар.

Фруктоза встречается даже в свободном виде в растениях, конечно же, не только в фруктах, как можно подумать из их названия. Фруктоза входит в состав сахарозы.

Олигосахариды и дисахариды

Олигосахариды – углеводы, которые содержат от 2 до 10 моносахаридных остатков, связанных между собой ковалентно гликозидной связью. Название группы происходит от греч. ὀλίγος — немногий. Дисахариды входят в группу олигосахаридов.

Физические свойства: большинство имеют сладковатый вкус и хорошо растворяются в воде.

Наиболее известными и распространенными из олигосахаридов являются гетеросахариды лактоза и сахароза – тростниковый сахар, а солодовый сахар – мальтоза относится к подгруппе дисахаридов.

Полисахариды

Полисахариды – высокомолекулярные полимеры, содержащие от нескольких сотен до нескольких тысяч моносахаридных остатков, также соединенных ковалентными гликозидными связями. Название происходит от греч. pὀλγ – много. Чем больше в полисахариде мономеров – тем менее он сладкий на вкус и менее растворим в воде.

К полисахаридам относятся следующие распространенные соединения: крахмал, гликоген, целлюлоза, хитин. Эти полисахариды очень важны для организмов. В виде крахмальных зерен углеводы запасаются в растительных клетках. Целлюлоза составляет клеточную стенку клеток растений, а хитин входит в состав покрова насекомых, ракообразных и паукообразных. Также хитин составляет клеточную стенку грибов. Гликоген служит для запасания углеводов в животных организмах. Интересен тот факт, что крахмал, гликоген и целлюлоза состоят из одинаковых моносахаридов, разница лишь в том, что они по-разному соединены. И это важно знать к экзамену, но есть хитрость, с помощью которой можно это запомнить. Соединения имеют разную степень разветвленности. Целлюлоза используется в бумажной промышленности. Представим себе просто лист бумаги, обычный прямоугольник. Структура целлюлозы не имеет никаких разветвлений. Здесь важно положить старт по разветвленности. Нулевая она как раз-таки у целлюлозы. Далее идет крахмал, о котором мы вспоминаем, так как целлюлоза и крахмал имеют отношение к растениям. И замыкает цепь наиболее разветвленный из самых известных полимеров гликоген.

Схема строения углеводов

Функции углеводов
  1. Энергетическая и запасающая функции

Как уже было сказано выше, в крахмальных зернах запасается энергия в растительных клетках, а в виде гликогена – в животных организмах. Кроме того, самый главный источник энергии – АТФ включает в себя моносахарид рибозу. Организм живет в первую очередь за счет потребления углеводов. При расщеплении 1 г углеводов организм получает 17,6 кДж энергии. Наибольшее количество углеводов расходуется при активном росте (относится и к растениям, и к животным), тяжелым физической, умственной и эмоциональной нагрузке.

2. Строительная функция

Хитин и целлюлоза – наиболее наглядные представители углеводов, выполняющих строительную функцию. Целлюлоза является основой для клеточной стенки растений, а хитин – для покрова членистоногих. Данные углеводы не растворяются в воде, что подтверждает правило, которое гласит: чем длиннее цепь мономеров – тем менее растворяемое в воде соединение.

3. Защитная функция

Жесткие хитиновые покровы и оболочку из целлюлозы можно считать защитными механизмами организмов. Кроме того, некоторые растения выделяют при повреждении ствола смолы, которые препятствуют попаданию болезнетворных микроорганизмов в рану, предотвращая тем самым заражения. Такие смолы называются «камедь».

Функции углеводов в организме: (EUFIC)

Последнее обновление: 14 января 2020 г.

В этой части нашего обзора углеводов мы объясняем различные типы и основные функции углеводов, включая сахара. Чтобы узнать, как потребление углеводов связано со здоровьем, обратитесь к статье «Углеводы полезны или вредны для вас?».

1. Введение

Наряду с жирами и белками углеводы являются одним из трех макроэлементов в нашем рационе, основная функция которых - обеспечивать организм энергией.Они встречаются во многих различных формах, таких как сахар и пищевые волокна, а также во многих различных продуктах, таких как цельнозерновые, фрукты и овощи. В этой статье мы исследуем разнообразие углеводов, содержащихся в нашем рационе, и их функции.

2. Что такое углеводы?

В основном углеводы состоят из строительных блоков сахаров, и их можно классифицировать в зависимости от того, сколько сахарных единиц объединено в их молекуле. Глюкоза, фруктоза и галактоза являются примерами однокомпонентных сахаров, также известных как моносахариды.Двойные сахара называются дисахаридами, среди которых наиболее широко известны сахароза (столовый сахар) и лактоза (молочный сахар). Моносахариды и дисахариды обычно называют простыми углеводами. Длинноцепочечные молекулы, такие как крахмалы и пищевые волокна, известны как сложные углеводы. На самом деле, однако, есть более явные различия. В таблице 1 представлен обзор основных типов углеводов в нашем рационе.

Таблица 1. Примеры углеводов, основанные на различных классификациях.

КЛАСС

ПРИМЕРЫ

Моносахариды

Глюкоза, фруктоза, галактоза

Дисахариды

Сахароза, лактоза, мальтоза

Олигосахариды

Фруктоолигосахариды, мальтоолигосахариды

Полиолы

Изомальт, мальтит, сорбит, ксилит, эритрит

Полисахариды крахмала

Амилоза, амилопектин, мальтодекстрины

Некрахмальные полисахариды
(пищевые волокна)

Целлюлоза, пектины, гемицеллюлозы, камеди, инулин

Углеводы также известны под следующими названиями, которые обычно относятся к определенным группам углеводов 1 :

  • сахара
  • простых и сложных углеводов
  • устойчивый крахмал
  • пищевые волокна
  • пребиотики
  • собственных и добавленных сахаров

Различные названия происходят из-за того, что углеводы классифицируются в зависимости от их химической структуры, а также в зависимости от их роли или источника в нашем рационе.Даже ведущие органы здравоохранения не имеют согласованных общих определений для различных групп углеводов 2 .

3. Виды углеводов

3.1. Моносахариды, дисахариды и полиолы

Простые углеводы, содержащие одну или две единицы сахара, также известны как сахара. Примеры:

  • Глюкоза и фруктоза: моносахариды, которые содержатся во фруктах, овощах, меде, а также в пищевых продуктах, таких как глюкозно-фруктозные сиропы
  • Столовый сахар или сахароза представляет собой дисахарид глюкозы и фруктозы и естественным образом встречается в сахарной свекле, сахарном тростнике и фруктах
  • Лактоза, дисахарид, состоящий из глюкозы и галактозы, является основным углеводом молока и молочных продуктов
  • Мальтоза представляет собой дисахарид глюкозы, содержащийся в сиропах из солода и крахмала

Моносахаридные и дисахаридные сахара, как правило, добавляются в пищевые продукты производителями, поварами и потребителями и называются «добавленными сахарами».Они также могут присутствовать в виде «свободных сахаров», которые естественным образом содержатся в меде и фруктовых соках.

Полиолы, или так называемые сахарные спирты, тоже сладкие и могут использоваться в пищевых продуктах так же, как и сахар, но имеют более низкую калорийность по сравнению с обычным столовым сахаром (см. Ниже). Они действительно встречаются в природе, но большинство полиолов, которые мы используем, производятся путем преобразования сахаров. Сорбитол является наиболее часто используемым полиолом в пищевых продуктах и ​​напитках, а ксилит часто используется в жевательных резинках и мятных конфетах. Изомальт - это полиол, производимый из сахарозы, часто используемый в кондитерских изделиях.Полиолы могут оказывать слабительное действие при употреблении в пищу в слишком больших количествах.

Если вы хотите узнать больше о сахарах в целом, прочтите нашу статью «Сахара: ответы на общие вопросы», статью «Решение общих вопросов о подсластителях» или изучите возможности и трудности замены сахара в выпечке и полуфабрикатах ( «Сахар с точки зрения пищевых технологий»).

3.2. Олигосахариды

Всемирная организация здравоохранения (ВОЗ) определяет олигосахариды как углеводы с 3-9 сахарными единицами, хотя другие определения допускают немного более длинные цепи.Самыми известными являются олигофруктаны (или, в собственном научном смысле: фруктоолигосахариды), которые содержат до 9 единиц фруктозы и естественным образом встречаются в овощах с низкой сладостью, таких как артишоки и лук. Рафиноза и стахиоза - два других примера олигосахаридов, которые содержатся в некоторых бобовых, зернах, овощах и меде. Большинство олигосахаридов не расщепляются на моносахариды пищеварительными ферментами человека и вместо этого используются микробиотой кишечника (дополнительную информацию см. В нашем материале о пищевых волокнах).

3.3. Полисахариды

Десять или более, а иногда даже несколько тысяч сахарных единиц необходимы для образования полисахаридов, которые обычно делятся на два типа:

  • Крахмал, который является основным запасом энергии в корнеплодах, таких как лук, морковь, картофель и цельнозерновые. Он имеет цепи глюкозы разной длины, более или менее разветвленные, и встречается в гранулах, размер и форма которых различаются между растениями, которые их содержат. Соответствующий полисахарид у животных называется гликогеном.Некоторые крахмалы могут перевариваться только микробиотой кишечника, а не механизмами нашего собственного тела: они известны как устойчивые крахмалы.
  • Некрахмальные полисахариды, которые входят в группу пищевых волокон (хотя некоторые олигосахариды, такие как инулин, также считаются диетическими волокнами). Примерами являются целлюлоза, гемицеллюлозы, пектины и камеди. Основными источниками этих полисахаридов являются овощи и фрукты, а также цельнозерновые продукты. Отличительной чертой некрахмальных полисахаридов и фактически всех пищевых волокон является то, что люди не могут их переваривать; следовательно, их среднее содержание энергии ниже по сравнению с большинством других углеводов.Однако некоторые типы клетчатки могут метаболизироваться кишечными бактериями, в результате чего образуются полезные для нашего организма соединения, такие как короткоцепочечные жирные кислоты. Узнайте больше о пищевых волокнах и их важности для нашего здоровья в нашей статье о «цельнозерновых» и «диетических волокнах».

Далее мы будем иметь в виду «сахара», когда говорим о моно- и дисахаридах, и «волокна», когда говорим о некрахмальных полисахаридах.

4. Функции углеводов в нашем организме

Углеводы - важная часть нашего рациона.Что наиболее важно, они обеспечивают энергией самые очевидные функции нашего тела, такие как движение или мышление, но также и «фоновые» функции, которые большую часть времени мы даже не замечаем. 1 . Во время пищеварения углеводы, состоящие из более чем одного сахара, расщепляются на моносахариды пищеварительными ферментами, а затем непосредственно всасываются, вызывая гликемический ответ (см. Ниже). Организм напрямую использует глюкозу в качестве источника энергии в мышцах, мозговых и других клетках.Некоторые из углеводов не могут быть расщеплены, и они либо ферментируются кишечными бактериями, либо проходят через кишечник без изменений. Интересно, что углеводы также играют важную роль в структуре и функциях наших клеток, тканей и органов.

4.1. Углеводы как источник энергии и их хранение

Углеводы, расщепленные в основном на глюкозу, являются предпочтительным источником энергии для нашего тела, поскольку клетки нашего мозга, мышц и всех других тканей напрямую используют моносахариды для удовлетворения своих энергетических потребностей.В зависимости от вида один грамм углеводов обеспечивает разное количество энергии:

  • Крахмал и сахар являются основными углеводами, обеспечивающими энергию, и обеспечивают 4 килокалории (17 килоджоулей) на грамм
  • Полиолы содержат 2,4 килокалории (10 килоджоулей) (эритритол вообще не усваивается, поэтому дает 0 калорий)
  • Пищевые волокна 2 килокалории (8 килоджоулей)

Моносахариды непосредственно абсорбируются тонким кишечником в кровоток, откуда они транспортируются к нуждающимся клеткам.Некоторые гормоны, в том числе инсулин и глюкагон, также являются частью пищеварительной системы. Они поддерживают уровень сахара в крови, удаляя или добавляя глюкозу в кровоток по мере необходимости.

Если не использовать напрямую, организм превращает глюкозу в гликоген, полисахарид, подобный крахмалу, который хранится в печени и мышцах в качестве легкодоступного источника энергии. Когда это необходимо, например, между приемами пищи, ночью, во время подъемов физической активности или во время коротких периодов голодания, наш организм превращает гликоген обратно в глюкозу, чтобы поддерживать постоянный уровень сахара в крови.

Мозг и красные кровяные тельца особенно зависят от глюкозы как источника энергии и могут использовать другие формы энергии из жиров в экстремальных условиях, например, в очень длительные периоды голодания. Именно по этой причине уровень глюкозы в крови должен постоянно поддерживаться на оптимальном уровне. Примерно 130 г глюкозы необходимо в день только для покрытия энергетических потребностей мозга взрослого человека.

4.2. Гликемический ответ и гликемический индекс

Когда мы едим пищу, содержащую углеводы, уровень глюкозы в крови повышается, а затем понижается, и этот процесс известен как гликемический ответ.Он отражает скорость переваривания и всасывания глюкозы, а также влияние инсулина на нормализацию уровня глюкозы в крови. На скорость и продолжительность гликемического ответа влияет ряд факторов:

  • Сама еда:
    • Тип сахара (ов), образующих углевод; например фруктоза имеет более низкий гликемический ответ, чем глюкоза, а сахароза имеет более низкий гликемический ответ, чем мальтоза
    • Строение молекулы; например крахмал с большим количеством ветвей легче расщепляется ферментами и, следовательно, легче усваивается, чем другие
    • Используемые методы приготовления и обработки
    • Количество других питательных веществ в пище, таких как жир, белок и клетчатка
  • (метаболические) обстоятельства у каждого человека:
    • Степень жевания (механическое нарушение)
    • Скорость опорожнения желудка
    • Время прохождения через тонкий кишечник (частично зависит от пищи)
    • Сам метаболизм
    • Время приема пищи

Влияние различных пищевых продуктов (а также технологии обработки пищевых продуктов) на гликемический ответ классифицируется относительно стандарта, обычно белого хлеба или глюкозы, в течение двух часов после еды.Это измерение называется гликемическим индексом (GI). GI 70 означает, что еда или питье вызывают 70% ответа глюкозы в крови, который можно было бы наблюдать с тем же количеством углеводов из чистой глюкозы или белого хлеба; однако большую часть времени углеводы едят как смесь вместе с белками и жирами, которые влияют на ГИ.

Продукты с высоким ГИ вызывают большую реакцию глюкозы в крови, чем продукты с низким ГИ. В то же время продукты с низким ГИ перевариваются и усваиваются медленнее, чем продукты с высоким ГИ.В научном сообществе ведется много дискуссий, но в настоящее время недостаточно доказательств, чтобы предположить, что диета, основанная на продуктах с низким ГИ, связана со сниженным риском развития метаболических заболеваний, таких как ожирение и диабет 2 типа.

ГЛИКЕМИЧЕСКИЙ ИНДЕКС НЕКОТОРЫХ ОБЫЧНЫХ ПРОДУКТОВ (с использованием глюкозы в качестве стандарта)

Продукты с очень низким ГИ (≤ 40)

Сырое яблоко
Чечевица
Соевые бобы
Фасоль
Коровье молоко
Морковь (вареная)
Ячмень

Продукты с низким ГИ (41-55)

Лапша и макаронные изделия
Яблочный сок
Сырые апельсины / апельсиновый сок
Финики
Сырой банан
Йогурт (фрукты)
Цельнозерновой хлеб
Клубничное варенье
Сладкая кукуруза
Шоколад

Продукты питания с промежуточным ГИ (56-70)

Коричневый рис
Овсяные хлопья
Безалкогольные напитки
Ананас
Мед
Хлеб на закваске

Продукты с высоким ГИ (> 70)

Белый и непросеянный хлеб
Вареный картофель
Кукурузные хлопья
Картофель фри
Картофельное пюре
Белый рис
Рисовые крекеры

4.3. Функция кишечника и пищевые волокна

Хотя наш тонкий кишечник не может переваривать пищевые волокна, клетчатка помогает обеспечить хорошее функционирование кишечника за счет увеличения физического объема кишечника и, таким образом, стимулирования кишечного транзита. Когда неперевариваемые углеводы попадают в толстый кишечник, некоторые типы клетчатки, такие как камеди, пектины и олигосахариды, расщепляются микрофлорой кишечника. Это увеличивает общую массу кишечника и благотворно влияет на состав микрофлоры кишечника.Это также приводит к образованию продуктов жизнедеятельности бактерий, таких как жирные кислоты с короткой цепью, которые выделяются в толстой кишке, оказывая благотворное влияние на наше здоровье (дополнительную информацию см. В наших статьях о пищевых волокнах).

5. Резюме

Углеводы - это один из трех макроэлементов в нашем рационе, который необходим для правильного функционирования организма. Они бывают разных форм, от сахара вместо крахмала до пищевых волокон, и присутствуют во многих продуктах, которые мы едим. Если вы хотите узнать больше о том, как они влияют на наше здоровье, прочтите нашу статью «Углеводы полезны или вредны для вас?».

Список литературы

  1. Каммингс Дж. Х. и Стивен А. М. (2007). Терминология и классификация углеводов. Европейский журнал клинического питания 61: S5-S18.
  2. Портал знаний JRC Европейской комиссии, укрепление здоровья и профилактика заболеваний. Доступ 17 октября 2019 г.
    .

    Функции углеводов в организме

    4.3 Функции углеводов в организме

    Цель обучения

    1. Перечислите четыре основные функции углеводов в организме человека.

    В организме человека есть пять основных функций углеводов. Они производят энергию, накапливают энергию, строят макромолекулы, экономят белок и способствуют липидному обмену.

    Производство энергии

    Основная роль углеводов - снабжать энергией все клетки организма.Многие клетки предпочитают глюкозу как источник энергии по сравнению с другими соединениями, такими как жирные кислоты. Некоторые клетки, такие как красные кровяные тельца, способны производить клеточную энергию только из глюкозы. Мозг также очень чувствителен к низким уровням глюкозы в крови, потому что он использует только глюкозы для выработки энергии и функционирования (если только в условиях крайнего голодания). Около 70 процентов глюкозы, поступающей в организм в результате пищеварения, перераспределяется (печенью) обратно в кровь для использования другими тканями.Клетки, которым требуется энергия, удаляют глюкозу из крови с помощью транспортного белка в своих мембранах. Энергия глюкозы поступает из химических связей между атомами углерода. Энергия солнечного света требовалась для образования этих высокоэнергетических связей в процессе фотосинтеза. Клетки нашего тела разрывают эти связи и захватывают энергию для клеточного дыхания. Клеточное дыхание - это, по сути, контролируемое сжигание глюкозы по сравнению с неконтролируемым сжиганием. Клетка использует множество химических реакций на нескольких ферментативных стадиях, чтобы замедлить высвобождение энергии (без взрыва) и более эффективно улавливать энергию, удерживаемую в химических связях в глюкозе.

    Первая стадия распада глюкозы называется гликолизом. Гликолиз - первая стадия распада глюкозы; Десятиступенчатый ферментативный процесс, который расщепляет глюкозу на две трехуглеродные молекулы и дает две молекулы АТФ, или расщепление глюкозы, происходит в сложной серии из десяти этапов ферментативных реакций. Второй этап распада глюкозы происходит в органеллах энергетической фабрики, называемых митохондриями. Один атом углерода и два атома кислорода удаляются, что дает больше энергии.Энергия от этих углеродных связей переносится в другую область митохондрий, делая клеточную энергию доступной в той форме, которую клетки могут использовать.

    Клеточное дыхание - это процесс извлечения энергии из глюкозы.

    Накопитель энергии

    Рисунок 4.5

    Структура гликогена делает возможным его быструю мобилизацию в свободную глюкозу для питания клеток.

    Если у тела уже достаточно энергии для поддержания своих функций, избыток глюкозы откладывается в виде гликогена (большая часть которого хранится в мышцах и печени).Молекула гликогена может содержать более пятидесяти тысяч отдельных единиц глюкозы и сильно разветвлена, что позволяет быстро распространять глюкозу, когда она необходима для выработки клеточной энергии (рис. 4.5).

    Количество гликогена в организме в любой момент времени эквивалентно примерно 4000 килокалорий - 3000 в мышечной ткани и 1000 в печени. Продолжительное использование мышц (например, упражнения более нескольких часов) может истощить запас энергии гликогена. Помните также из главы 3 «Питание и человеческое тело», что это называется «удар о стену» или «удар» и характеризуется утомляемостью и снижением работоспособности.Ослабление мышц наступает потому, что для преобразования химической энергии жирных кислот и белков в полезную энергию требуется больше времени, чем для глюкозы. После продолжительных упражнений гликоген уходит, и мышцы должны больше полагаться на липиды и белки как на источник энергии. Спортсмены могут незначительно увеличить свой запас гликогена, снизив интенсивность тренировок и увеличив потребление углеводов до 60-70 процентов от общего количества калорий за три-пять дней до соревнований. Людям, которые не занимаются жесткими тренировками и предпочитают пробегать 5-километровую дистанцию ​​для развлечения, не нужно есть большую тарелку макарон перед гонкой, поскольку без длительных интенсивных тренировок не произойдет адаптации повышенного гликогена в мышцах.

    Печень, как и мышцы, может накапливать энергию глюкозы в виде гликогена, но в отличие от мышечной ткани она жертвует накопленную энергию глюкозы другим тканям тела, когда уровень глюкозы в крови низкий. Примерно четверть общего содержания гликогена в организме находится в печени (что эквивалентно примерно четырехчасовому запасу глюкозы), но это сильно зависит от уровня активности. Печень использует этот запас гликогена как способ поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи.Когда запасы гликогена в печени истощены, глюкоза образуется из аминокислот, полученных в результате разрушения белков, для поддержания метаболического гомеостаза.

    Строительные макромолекулы

    Хотя большая часть поглощенной глюкозы используется для производства энергии, часть глюкозы превращается в рибозу и дезоксирибозу, которые являются важными строительными блоками важных макромолекул, таких как РНК, ДНК и АТФ (рис. 4.6). Глюкоза дополнительно используется для образования молекулы НАДФН, который важен для защиты от окислительного стресса и используется во многих других химических реакциях в организме.Если вся энергия, способность накапливать гликоген и потребности организма в наращивании удовлетворяются, избыток глюкозы может быть использован для производства жира. Вот почему диета с высоким содержанием углеводов и калорий может прибавить лишний вес - тема, которая будет обсуждаться в ближайшее время.

    Рисунок 4.6

    Дезоксирибоза из молекулы сахара используется для построения основы ДНК.

    Экономный белок

    В ситуации, когда недостаточно глюкозы для удовлетворения потребностей организма, глюкоза синтезируется из аминокислот.Поскольку молекулы для хранения аминокислот отсутствуют, этот процесс требует разрушения белков, в первую очередь из мышечной ткани. Наличие достаточного количества глюкозы в основном предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

    Липидный метаболизм

    По мере повышения уровня глюкозы в крови использование липидов в качестве источника энергии подавляется. Таким образом, глюкоза дополнительно «сберегает жир». Это связано с тем, что повышение уровня глюкозы в крови стимулирует высвобождение гормона инсулина, который говорит клеткам использовать глюкозу (вместо липидов) для производства энергии.Достаточный уровень глюкозы в крови также предотвращает развитие кетоза. Кетоз - это метаболическое состояние, возникающее в результате повышения содержания кетоновых тел в крови. Кетоновые тела - это альтернативный источник энергии, который клетки могут использовать при недостаточном поступлении глюкозы, например, во время голодания. Кетоновые тела являются кислыми, и высокое содержание в крови может привести к тому, что она станет слишком кислой. Это редко встречается у здоровых взрослых, но может возникать у алкоголиков, людей, страдающих от недоедания, и у людей с диабетом 1 типа.Минимальное количество углеводов в рационе, необходимое для подавления кетоза у взрослых, составляет 50 граммов в день.

    Углеводы имеют решающее значение для поддержки самой основной функции жизни - производства энергии. Без энергии никакие другие жизненные процессы не выполняются. Хотя наш организм может синтезировать глюкозу, это происходит за счет разрушения белка. Однако, как и все питательные вещества, углеводы следует потреблять в умеренных количествах, так как их слишком много или слишком мало в рационе может привести к проблемам со здоровьем.

    Основные выводы

    • Четыре основных функции углеводов в организме - обеспечивать энергию, накапливать энергию, строить макромолекулы и сберегать белок и жир для других целей.
    • Энергия глюкозы хранится в виде гликогена, большая часть которого находится в мышцах и печени. Печень использует свой запас гликогена, чтобы поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи. Некоторая глюкоза также используется в качестве строительных блоков важных макромолекул, таких как РНК, ДНК и АТФ.
    • Наличие достаточного количества глюкозы в организме предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

    Обсуждение стартеров

    1. Обсудите две причины, по которым важно включать углеводы в свой рацион.
    2. Почему организму необходимо экономить белок?
    .Структура и классификация

    - StudiousGuy

    Углеводы - один из самых важных компонентов биологического мира, а также один из самых распространенных классов биологических молекул. Слово «углевод» происходит от греческого слова « sakcharon », означающего « сахар ». Углеводы - это не что иное, как соединения альдегидов или кетонов с несколькими гидроксильными группами. Буквальное значение углеводов - «гидраты углерода» , что связано с их химическим составом.Химический состав углеводов или сахаридов (CH 2 O) n, где n> 3 или n = 3.

    Основные функции углеводов
    1. Запасы энергии : Углеводы составляют запасы энергии, топливо и промежуточные продукты метаболизма.
    2. Структурный каркас генетического материала : Сахара рибоза и дезоксирибоза являются частью структурного каркаса генетического материала РНК и ДНК.
    3. Структурный элемент клеточной стенки : Полисахариды - структурные элементы клеточной стенки бактерий и растений.
    4. Целлюлоза , полисахарид и основной компонент клеточной стенки трусов, является одним из наиболее распространенных органических соединений в биосфере.
    5. Конъюгат с липидами и белками : Углеводы - это сильно связанные молекулы белков и липидов. Эти гликопротеины и гликолипиды имеют решающее значение для управления взаимодействиями между клетками и другими биологическими элементами.
    Классификация углеводов

    Углеводы можно разделить на 2 категории -

    1. моно-, олиго- и полисахариды и
    2. редуцирующие и невосстанавливающие сахара

    Углеводы классифицируются в зависимости от того, подвергаются ли они гидролизу или нет, и если да, то по количеству образующихся продуктов:

    1. Моносахариды : Моносахариды простейшие Они не могут быть гидролизованы дальше до гидроксилальдегида и кетона.

    2. Олигосахариды : Олигосахариды - это полимеры, содержащие от двух до десяти моносахаридных звеньев. Отдельные моносахаридные звенья соединены вместе гликозидными связями . Они часто присутствуют в сочетании с белками ( гликопротеина ) и липидами ( гликолипидов ). Эти два конъюгата углеводов с белками и липидами вместе называются гликоконъюгатами . В зависимости от присутствующей моносахаридной единицы олигосахариды подразделяются на:

    • Дисахариды - с двумя моносахаридными звеньями.
    • Трисахариды - с тремя моносахаридными единицами.
    • Тетрасахариды - с четырьмя моносахаридными звеньями.
    • Пентасахариды - с пятью моносахаридными звеньями.

    3. Полисахариды : Полисахариды имеют сотни и даже тысячи моносахаридных единиц , ковалентно связанных . Молекулярная масса этих полимеров измеряется миллионами дальтон. Они играют решающую роль в поддержании структурной целостности живых организмов. Целлюлоза является основным структурным полисахаридом растений. Крахмал в растениях и гликоген в случае животных являются основными пищевыми резервами.

    Моносахариды или простые сахара

    Моносахариды - это простейшие производные альдегидов или кетонов, которые не могут подвергаться дальнейшему гидролизу; например, D-глюкоза и D-рибулоза не могут подвергаться дальнейшему гидролизу.

    Моносахариды делятся на две подгруппы в зависимости от

    • Число присутствующих атомов углерода : наименьший моносахарид - это моносахарид с тремя атомами углерода, известный как триоза .Следовательно, моносахариды с четырьмя, пятью, шестью или семью атомами углерода называются тетрозами, пентозами, гексозами и гептозами
    • Химическая природа карбонильной группы или наличие альдегида или кетона : если карбонильная группа представляет собой альдегид по природе, моносахарид называется альдозой . Если карбонильная группа представляет собой кетон , то моносахарид называется кетозой .

    Следовательно, моносахарид глюкоза может называться « альдогексоза» .Это означает, что это шестиуглеродный моносахарид с карбонильной группой, которая является альдегидной по природе. Точно так же фруктоза представляет собой « кетогексозу» , содержащую шестиуглеродный моносахарид и кетоновую группу.

    Наименьшие моносахариды или триозы (n = 3) - это дигидроксиацетон , D- и L-глицеральдегид .

    Глицеральдегид с атомом C-2 имеет хиральных или асимметричных по природе, в дальнейшем существует два стереоизомера этого сахара.Хиральные соединения, такие как глицеральдегид, обычно существуют в двух формах, которые представляют собой неперекрывающихся зеркальных отражений друг друга. Эти не накладываемые друг на друга зеркальные изображения известны как энантиомеры . Часто они представлены как проекции Фишера . В проекциях Фишера атомы, которые связаны с асимметричным атомом углерода горизонтальными связями, находятся перед плоскостью страницы, тогда как атомы, связанные с асимметричным атомом углерода вертикальными связями, находятся позади.В случае глицеральдегида, когда гидроксильная группа, которая присоединена к асимметричному атому углерода, присутствует слева от выступа Фишера, конфигурация обозначается как 'L' , а когда гидроксильная группа присутствует справа, конфигурация ' D' .

    Поскольку другие полимеры имеют более одного хирального или асимметричного углерода, они обычно существуют в виде диастереоизомеров . Диастереоизомеры не являются зеркальным отображением друг друга. Соединение с «n» хиральными атомами углерода будет иметь максимум 2 n стереоизомеров .Принимая во внимание глюкозы , мы видим, что 4 из 6 атомов углерода в ней хиральные. Исходя из общей формулы для расчета количества стереоизомеров, 2 n , могут возникнуть 16 возможных стереоизомеров , включающих все возможные альдогексозы. Абсолютная конфигурация моносахаридов, которые содержат несколько хиральных атомов углерода, тем не менее, определяется путем сравнения конфигурации хирального углерода с самым высоким номером с конфигурацией одного хирального углерода глицеральдегида.За исключением дигидроксиацетона, все моносахариды находятся в оптически активных изомерных формах.

    Эпимеры - сахара, которые отличаются от только одним асимметричным или хиральным углеродом, называются эпимерами. Например, D-глюкоза и D-манноза различаются только по C-2. В дополнение к этому, даже D-глюкоза и D-галактоза различаются по C-4.

    Циклические формы - пентозы и гексозы циклизуются с образованием кольцевой структуры пиранозы и фуранозы

    Моносахарид , полимеры, такие как глюкоза, фруктоза и другие , не существуют в виде открытых цепей в растворе .Открытые цепи этих простых сахаров циклизуются с образованием колец . Альдегидные и кетоновые группы легко реагируют со спиртами с образованием полуацеталей и гемикеталей соответственно. В альдогексозах, таких как глюкоза, альдегид на C-1 в открытой цепи глюкозы реагирует с гидроксильной группой на C-5, давая полуацеталь. Результатом этого процесса является циклическая структура из шести атомов углерода, известная как пираноза .

    Аналогичным образом кетон реагирует со спиртом с образованием гемикеталя.В форме кетогексозы с открытой цепью, например фруктозе, кетогруппа в C-2 реагирует либо с гидроксильной группой в C-6 с образованием шестичленного циклического полукеталя, либо с гидроксильной группой в C-5 с образованием пятичленного циклический гемикетал. Образовавшееся пятичленное циклическое кольцо называется фуран .

    Весь процесс образования пиранозы и фуранозы описывается следующим образом. Изображения глюкопиранозы и фруктофуранозы упоминаются как проекции Ховарта .В процессе образования циклического полуацеталя создается дополнительный асимметричный центр. C-1 в случае разомкнутой цепи глюкозы становится асимметричным центром. Конечным продуктом является образование двух кольцевых структур: α - D-глюкопираноза и β - D-глюкопираноза. В случае D-сахаров, представленных в виде проекций Ховарта, символ α означает, что гидроксильная группа C-1 находится ниже плоскости кольца; β означает, что та же гидроксильная группа находится выше плоскости кольца.Эти два диастереоизомера называются аномерами . Аналогичный процесс происходит при образовании фуранозного кольца фруктозы. Единственное отличие состоит в том, что гидроксильная группа присоединена к атому углерода C-2.

    Формы α и β взаимно преобразуются через форму с открытой цепью, давая равновесную смесь. Этот процесс взаимного преобразования обычно называют мутаротацией . Смесь глюкозы в равновесном состоянии содержит примерно одну треть α-аномера, две трети β-аномера и менее 1% открытой цепи.

    Конформации форм пиранозы и фуранозы

    Форма пиранозы может легко принять две формы: кресло и лодка . Заместители в случае формы кресла имеют две ориентации: аксиальную и экваториальную . Осевые группы , которые плотно прилегают к , обычно проходят параллельно оси вращения кольца третьего порядка. Если им удастся выйти из одной и той же стороны кольца, они будут стерически мешать друг другу. Экваториальная ориентация обычно на меньше по сравнению с осевыми заместителями. В случае глюкозы кресельная форма β -D-глюкопиранозы преобладает и более стабильна только потому, что все аксиальные позиции заняты атомами водорода.

    Фураноза кольца не планарные . Четыре атома примерно на копланарных , поэтому конформация может быть сморщенной . Просто потому, что эта конкретная форма напоминает раскрытый конверт, она называется envelope form .Скажем, например, фрагмент рибозы имеет либо С-2, либо С-3 вне плоскости и на той же стороне, что и С-5. Эти конформации, в частности, называются C2-endo и C3-endo, соответственно.

    Моносахариды и их производные

    Моносахариды легко реагируют со спиртами и аминами с образованием модифицированных продуктов, называемых аддуктами . Спирты реагируют с полуацеталями с образованием ацеталей , и когда они реагируют с полуацеталем сахаров с образованием ацеталя, его обычно называют гликозидом .Когда глюкоза представляет собой полуацеталь, результатом является образование глюкозида , если галактоза, то галактозида . Уабаин - наиболее распространенный гликозид. В частности, он подавляет действие ферментов, которые перекачивают Na + и K + через мембраны биологических клеток. Антибиотики, такие как , стрептомицин , также являются гликозидами.

    Скажем, например, метанол реагирует через кислотно-катализируемый процесс с D-глюкозой.В результате реакции между аномерным углеродом и гидроксильной группой метанола образуются два продукта: метил α -D-глюкопиранозид и метил β -D-глюкопиранозид.

    Вот некоторые другие модифицированные сахара:

    Сложные сахара образуются гликозидной связью между моносахаридами

    Моносахариды легко образуют гликозидные связи из-за наличия нескольких гидроксильных групп. Дисахаридные сахара являются результатом 2 моносахаридов, связанных O-гликозидной связью , а олигосахариды образуются путем присоединения 2 или более моносахаридов гликозидной связью O- .

    В этом примере две молекулы связаны гликозидной связью O- с образованием дисахарида, мальтозы.

    Дисахариды и гликозидная связь

    Когда образуется дисахарид, два моносахарида соединяются друг с другом посредством образования гликозида или ацеталя . Потеря молекулы воды происходит, когда полуацеталь -ОН одного моносахарида и -ОН второго моносахарида взаимодействуют с образованием гликозидной связи.Следовательно, можно сказать, что гликозидная связь возникает из-за реакции между аномерным углеродом и алкокси кислородом . Следуя условию, гликозидные связи читаются слева направо.

    Наиболее распространенными дисахаридами являются лактоза, мальтоза и сахароза (обычный столовый сахар).

    Сахароза , которая имеется в продаже, получается из тростника или свеклы и является результатом реакции между α-аномерным углеродом остатка глюкозы (C1) и β-аномерным углеродом остатка фруктозы (C2).Следовательно, остатки глюкозы и фруктозы соединены посредством α1-2β гликозидной связи . Конфигурация всегда α для глюкозы и β для фруктозы. Сахароза, в свою очередь, может расщепляться на составляющие ее моносахариды под действием сахарозы . Гидролиз сахарозы часто сопровождается изменением оптического вращения с правого на левое. Следовательно, сахароза также известна как инвертный сахар или инвертоза . Этот процесс катализируется ферментом под названием инвертаза или β-D-фруктофуранозидаза.

    Мальтоза - дисахарид глюкозы. Гликозидная связь образуется между α-аномерным С-1 одной глюкозы и гидроксильным атомом С-4 соседнего остатка глюкозы . Следовательно, такая связь известна как α-1,4-гликозидная связь .

    Дисахарид молока, лактоза , представляет собой связь галактозы с глюкозой через β- 1,4-гликозидную связь .Лактоза расщепляется лактазой у человека и β-галактозидазой у бактерий.

    Полисахариды

    Множественные моносахариды связываются с образованием крупных полимерных олигосахаридов, называемых полисахаридами , , которые также известны как гликаны . Полисахариды универсальны по своим функциям. Они подразделяются на две группы: гомополисахаридов (которые содержат только один тип мономерной единицы) и гетерополисахаридов (которые содержат более одного или разных типов мономерных единиц).

    Гомополисахарид

    Ветвь D-глюкозы единиц дает крахмала . Крахмал - это основная форма хранения глюкозы в растениях. Он содержит амилозы и амилопектина. Амилопектин представляет собой разветвленную структуру, состоящую из α-D-глюкозы с α1-4 гликозидными связями и точками ветвления α1-6. Эти точки ветвления встречаются приблизительно с интервалами от 25 до 30 остатков α-D-глюкозы. Амилоза представляет собой неразветвленный линейный полимер из единиц α-D-глюкозы с повторяющейся последовательностью α1-4 гликозидных связей. Йодный тест широко используется для обнаружения крахмала . Темно-синий цвет, который образуется в присутствии йода, обусловлен присутствием амилозы в крахмале.

    Основной формой хранения углеводов у животных является гликоген . Он находится в печени и мышцах. Этот большой разветвленный полимер глюкозы имеет глюкозных остатков, связанных α-1,4-гликозидными связями. ветвей представляют около один раз на 10 единиц. образованы α-1,6-гликозидными связями .

    Другой линейный неразветвленный гомополисахарид D-глюкозы - это целлюлоза . Отдельные остатки глюкозы в целлюлозе соединены β-1,4-гликозидными связями . Это важно для поддержания структурной целостности растительных клеток. Ферментные системы человека не способны гидролизовать целлюлозу. Целлюлоза известна как одно из самых распространенных органических соединений в биосфере.

    Следует отметить, что прямые цепи более предпочтительны для β-1,4-связей. Они оптимальны для структурных целей, тогда как α-1,4-связи способствуют изогнутой структуре. Изогнутые конструкции очень удобны для хранения.

    Хитин - еще один гомополисахарид, который состоит из остатков N-ацетил-D-глюкозамина. Эти остатки соединены β-1,4-гликозидной связью . Это очень важно для поддержания структурной целостности экзоскелета насекомых и ракообразных.

    Гетерополисахариды

    Гилкозаминогликаны - это полисахаридов, неразветвленных, а также отрицательно заряженные гетерополисахариды. Эти гетерополисахариды состоят из повторяющихся диссахаридных единиц, [Кислый сахар - аминосахар] n . . Аминосахара в большинстве случаев либо N-ацетилглюкозамин, либо N-ацетилгалактозамин , а кислый сахар представляет собой производное уроновой кислоты , в основном глюкуроновую кислоту.

    Одним из простейших гетерополисахаридов является гиалурон или гиалуроновая кислота . Он содержит чередующиеся остатки D-глюкуроновой кислоты и N-ацетилглюкозамина. Другие основные гликозаминогликаны - это хондроитинсульфат, кератинсульфат, гепарин, гепарансульфат, дерматансульфат и гиалуронат. Эти полисахариды уникальны в том смысле, что их присутствие ограничено только бактериями и животными.

    Гликозаминогликаны обычно связываются с белками с образованием протеогликанов, за исключением гиалуроновой кислоты.Сайт для сборки полисахаридов - это сердцевинный белок в тельцах Гольджи. Определенное звено тетрасахарида первоначально собирается на остатке серина. Только после сборки на остатке серина синтезируется цепь GAG с добавлением единственного остатка сахара за один раз. Образование O-гликозидной связи происходит между остатком Ser белка и остатком сахара ксилозы связующего тетрасахарида.

    Пептидогликан или муреин широко присутствует в стенке бактериальной клетки.Это гетерополимер, состоящий из чередующихся (β1-4) связанных звеньев N-ацетилглюкозамина (NAG) и N-ацетилмурамовой кислоты (NAM). Лизосим гидролизует эту связь и, следовательно, разрушает клеточную стенку.

    Восстанавливающие и невосстанавливающие сахара

    Восстанавливающие сахара - это сахара, которые способны восстанавливать ионов железа или меди . Восстанавливающие сахара всегда имеют свободных альдегидных групп , что позволяет им действовать как восстановители.Интересно отметить, что все моносахаридов (альдозы или кетозы) в их гемикетальной или полуацетальной форме представляют собой редуцирующих сахаров . Свободный аномерный углерод диссахаридной или полисахаридной цепи, который не участвует в гликозидной связи, обычно называют восстанавливающим концом цепи.

    Кроме того, все диссахридов , за исключением сахарозы и трегалозы, представляют собой восстанавливающих сахаров. Все сахара, которые действуют как восстановители, подвергаются мутаротации в водном растворе.Поскольку сахароза и трегалоза не способны восстанавливать ионы трехвалентного или двухвалентного железа, их обычно называют невосстанавливающими сахарами . Два невосстанавливающих сахара имеют аномерный углерод, связанный с гликозидной связью, и, следовательно, не имеют свободных восстанавливающих концов.

    Формация осазона

    Известный немецкий химик Эмиль Фишер в 1875 году получил фенилгидразин (PhNHNH 2 ) восстановлением соли фенилдиазония. Это соединение фенилгидразин было широко популярно для исследования стереохимии глюкозы .

    Альдогексоза , а именно D-глюкоза 1 и D-манноза 3 , и D-кетогексоза , D-фруктоза 2 в присутствии гидроксида кальция взаимно превращаются друг в друга. Эта реакция, в которой участвует свободная карбонильная группа (восстанавливающий конец), протекает в присутствии избытка фенилгидразина при температуре кипения, не изменяет стереохимию при C 3 , C 4 и C 5 . Следовательно, можно легко сказать, что осазонов представляют собой не что иное, как производных углеводов , которые образуются только тогда, когда сахаров реагируют с фенилгидразином (присутствующим в избытке).Осазоны образуются из всех редуцирующих сахаров. Сахароза не может образовывать кристаллы осазона, так как это невосстанавливающий сахар.

    При окислении гидроксиметильной группы альфа-углерода (атом углерода рядом с хиральным углеродом) также образуется пара фенилгидразоновой группы. Происходит енолизация и приводит к образованию промежуточного продукта в этом процессе, ендиола 4. Этот процесс известен как перегруппировка Лобри де Брюн-Альберда ван Экштейна.

    Образование осазона важно, потому что он помогает в идентификации моносахаридов .Этот процесс происходит в два этапа. Во-первых, фенилгидразин и глюкоза взаимодействуют друг с другом с образованием глюкозофенилгидразона , что сопровождается удалением молекулы воды из функциональной группы. На втором этапе один эквивалент глюкозефенилгидразона реагирует с двумя эквивалентами фенилгидразина (присутствующего в избытке). Первый фенилгидразин первоначально окисляет альфа углерод до карбонильной группы, а второй фенилгидразин удаляет одну молекулу воды с недавно образованной карбонильной группой ранее окисленного углерода.Это дает связь углерод-азот . Альфа-углерод, участвующий в этой реакции, намного более активен, чем другие атомы углерода.

    Осазоны легко обнаружить, поскольку они имеют яркий цвет и кристаллическую природу. Каждый сахар образует отличительную кристаллическую форму осазона.

    • Мальтоза образует кристаллы в форме лепестков.
    • Лактоза образует пуховидные кристаллы.
    • Галактоза образует кристаллы в форме ромбических пластинок.
    • Глюкоза, фруктоза и манноза образуют метловидные или игольчатые кристаллы.

    .

    Использование, польза для здоровья и риски

    Углеводы или сахариды являются биомолекулами. Четыре основных класса биомолекул - это углеводы, белки, нуклеотиды и липиды. Углеводы - самые распространенные из четырех.

    Углеводы, также известные как углеводы, выполняют несколько функций в живых организмах, включая перенос энергии. Они также являются структурными компонентами растений и насекомых.

    Углеводные производные участвуют в репродуктивной функции, иммунной системе, развитии болезней и свертывании крови.

    Краткие сведения об углеводах

    • «Сахарид» - это другое слово, обозначающее «углевод».
    • К продуктам с высоким содержанием углеводов относятся хлеб, макаронные изделия, бобы, картофель, рис и крупы.
    • Один грамм углеводов содержит около 4 килокалорий
    • Углеводы с высоким гликемическим индексом (ГИ) быстро попадают в кровоток в виде глюкозы
    • Переход на диету с низким ГИ увеличивает шансы на здоровый вес и образ жизни

    Углеводы, также известные сахариды или углеводы - это сахара или крахмалы.Они являются основным источником пищи и ключевой формой энергии для большинства организмов.

    Они состоят из атомов углерода, водорода и кислорода.

    Углеводы составляют два основных соединения:

    Альдегиды : это атомы углерода и кислорода с двойной связью, а также атом водорода.

    Кетоны : это атомы углерода и кислорода с двойной связью, а также два дополнительных атома углерода.

    Углеводы могут объединяться в полимеры или цепочки.

    Эти полимеры могут функционировать как:

    • молекулы длительного хранения пищевых продуктов
    • защитные мембраны для организмов и клеток
    • основная структурная поддержка растений

    Большинство органических веществ на Земле состоит из углеводов.Они вовлечены во многие аспекты жизни.

    Есть разные типы углеводов. Они включают моносахариды, дисахариды и полисахариды.

    Моносахариды

    Это наименьшая возможная сахарная единица. Примеры включают глюкозу, галактозу или фруктозу. Глюкоза - основной источник энергии для клетки. «Сахар в крови» означает «глюкоза в крови».

    В питании человека к ним относятся:

    • галактоза, наиболее доступная в молоке и молочных продуктах
    • фруктоза, в основном в овощах и фруктах

    Дисахариды

    Дисахариды представляют собой две связанные вместе моносахаридные молекулы, например, лактозу, мальтоза и сахароза.

    При связывании одной молекулы глюкозы с молекулой галактозы образуется лактоза. Лактоза обычно содержится в молоке.

    При связывании одной молекулы глюкозы с молекулой фруктозы образуется молекула сахарозы.

    Сахароза содержится в столовом сахаре. Это часто является результатом фотосинтеза, когда солнечный свет, поглощаемый хлорофиллом, вступает в реакцию с другими соединениями растений.

    Полисахариды

    Различные полисахариды действуют как запасы пищи у растений и животных. Они также играют структурную роль в клеточной стенке растений и прочном внешнем скелете насекомых.

    Полисахариды представляют собой цепочку из двух или более моносахаридов.

    Цепь может быть:

    • разветвленной, так что молекула выглядит как дерево с ветвями и веточками
    • неразветвленная, где молекула представляет собой прямую линию

    Цепи молекул полисахаридов могут состоять из сотен или тысяч моносахаридов.

    Гликоген - это полисахарид, который люди и животные хранят в печени и мышцах.

    Крахмалы - это полимеры глюкозы, состоящие из амилозы и амилопектина.Богатые источники включают картофель, рис и пшеницу. Крахмал не растворяется в воде. Люди и животные переваривают их с помощью ферментов амилазы.

    Целлюлоза - одна из основных структурных составляющих растений. Дерево, бумага и хлопок в основном состоят из целлюлозы.

    Возможно, вы слышали о простых и сложных углеводах.

    Моносахариды и дисахариды - это простые углеводы, а полисахариды - сложные.

    Простые углеводы - это сахара.Они состоят всего из одной или двух молекул и обеспечивают быстрый источник энергии, но вскоре потребитель снова чувствует голод. Примеры включают белый хлеб, сахар и конфеты.

    Сложные углеводы состоят из длинных цепочек молекул сахара. Цельнозерновые и продукты, в которых все еще есть клетчатка, являются сложными углеводами. Они дольше насытят и считаются более полезными для здоровья, поскольку содержат больше витаминов, минералов и клетчатки. Примеры включают фрукты, овощи, бобовые и макароны из непросеянной муки.

    Хлеб, макаронные изделия, бобы, картофель, отруби, рис и крупы - это продукты, богатые углеводами. Большинство продуктов, богатых углеводами, имеют высокое содержание крахмала. Углеводы - самый распространенный источник энергии для большинства организмов, включая человека.

    При необходимости мы могли бы получать всю свою энергию из жиров и белков. Один грамм углеводов содержит примерно 4 килокалории (ккал), столько же, сколько и белок. Один грамм жира содержит около 9 ккал.

    Однако углеводы имеют и другие важные функции:

    • мозгу нужны углеводы, в частности глюкоза, потому что нейроны не могут сжигать жир
    • пищевые волокна состоят из полисахаридов, которые наш организм не переваривает

    Соединенные Штаты (U.S.) Диетические рекомендации на 2015–2020 годы рекомендуют получать от 45 до 65 процентов потребности в энергии из углеводов, и максимум 10 процентов должны поступать из простых углеводов, другими словами, глюкозы и простых сахаров.

    Каждые пару десятилетий происходит какой-то «прорыв», и людям советуют «избегать всех жиров» или «избегать углеводов».

    Углеводы были и останутся важной частью любого пищевого рациона человека.

    Углеводы и ожирение

    Некоторые утверждают, что глобальный рост ожирения связан с высоким потреблением углеводов.Однако ряд факторов способствуют возникновению этой проблемы:

    К ним относятся:

    • снижение физической активности
    • более высокое потребление нездоровой пищи
    • более высокое потребление пищевых добавок, таких как красители, усилители вкуса и искусственные эмульгаторы
    • меньше часов сна каждую ночь
    • повышение уровня жизни

    Стресс также может быть фактором. Одно исследование показало, что молекула нейропептида Y (NPY), которую организм высвобождает при стрессе, может «разблокировать» рецепторы Y2 в жировых клетках тела, стимулируя рост клеток в размерах и количестве.

    В быстро развивающихся странах, таких как Китай, Индия, Бразилия и Мексика, наблюдается рост ожирения по мере изменения уровня жизни и диетических привычек.

    Когда эти группы населения были худыми, их диеты были более насыщенными углеводами, чем сейчас. Они также потребляли больше натуральных продуктов и меньше вредной пищи, были более физически активными и дольше спали каждую ночь.

    А как насчет диетического питания?

    Многие сторонники диет с высоким или низким содержанием углеводов продвигают фирменные и переработанные продукты в качестве средств для похудания, таких как питательные батончики и порошки.Они часто содержат красители, искусственные подсластители, эмульгаторы и другие добавки, похожие на нездоровую пищу.

    Если потребители этих продуктов останутся физически неактивными, они могут заметить временную потерю веса, но когда они выйдут из диеты, вес вернется.

    Когда человек потребляет углеводы, пищеварительная система расщепляет часть из них до глюкозы. Эта глюкоза попадает в кровь и повышает уровень сахара в крови или глюкозы. Когда уровень глюкозы в крови повышается, бета-клетки поджелудочной железы выделяют инсулин.

    Инсулин - это гормон, который заставляет наши клетки поглощать сахар в крови для получения энергии или хранения. Когда клетки поглощают сахар в крови, уровень сахара в крови начинает падать.

    Когда уровень сахара в крови падает ниже определенной точки, альфа-клетки поджелудочной железы выделяют глюкагон. Глюкагон - это гормон, который заставляет печень выделять гликоген, сахар, хранящийся в печени.

    Короче говоря, инсулин и глюкагон помогают поддерживать нормальный уровень глюкозы в крови в клетках, особенно в клетках мозга. Инсулин снижает избыточный уровень глюкозы в крови, а глюкагон возвращает его обратно, когда он слишком низкий.

    Если уровень глюкозы в крови повышается слишком быстро, слишком часто, клетки в конечном итоге могут выйти из строя и не реагировать должным образом на инструкции инсулина. Со временем клеткам требуется больше инсулина для реакции. Мы называем это инсулинорезистентностью.

    После многих лет выработки высоких уровней инсулина бета-клетки поджелудочной железы могут изнашиваться. Производство инсулина падает. Со временем это может вообще прекратиться.

    Эффекты инсулинорезистентности

    Инсулинорезистентность может привести к широкому спектру проблем со здоровьем, в том числе:

    Это известно как метаболический синдром и связано с диабетом 2 типа.

    Снижение риска метаболического синдрома

    Длительный контроль уровня сахара в крови снижает шансы развития метаболического синдрома.

    Способы сделать это включают:

    • употребление натуральных углеводов
    • хороший сон
    • регулярные упражнения

    Углеводы во фруктах и ​​овощах, бобовых, цельнозерновых и т. Д., Как правило, попадают в кровоток медленнее по сравнению с с углеводами в обработанных пищевых продуктах.

    Углеводы в нездоровой и обработанной пище и напитках могут вызвать у человека более быстрое чувство голода, поскольку они вызывают быстрый скачок выработки глюкозы и инсулина.Натуральные продукты, содержащие углеводы, с меньшей вероятностью сделают это.

    Так называемая средиземноморская диета с высоким содержанием углеводов из естественных источников плюс умеренное количество животного или рыбного белка.

    Это оказывает меньшее влияние на потребность в инсулине и последующие проблемы со здоровьем по сравнению со стандартной американской диетой.

    Углеводы необходимы для хорошего здоровья. Те, которые поступают из натуральных, необработанных продуктов, таких как фрукты, овощи, бобовые, цельнозерновые и некоторые злаки, также содержат необходимые витамины, минералы, клетчатку и ключевые фитонутриенты.

    Углеводы, которые быстро повышают уровень сахара в крови, имеют высокий гликемический индекс (GI), в то время как те, которые более мягко влияют на уровень сахара в крови, имеют более низкий показатель GI.

    Углеводы попадают в кровоток в виде глюкозы с разной скоростью.

    • Углеводы с высоким ГИ поступают в кровоток быстро, как и глюкоза
    • Углеводы с низким ГИ поступают медленно, потому что им требуется больше времени на переваривание и расщепление

    В долгосрочной перспективе продукты с низким ГИ вместе с упражнения и регулярный сон лучше для поддержания здоровья и веса.

    Углеводы с низким ГИ связаны с:

    • меньшим набором веса
    • лучшим контролем диабета и уровнем сахара в крови
    • более здоровым уровнем холестерина в крови
    • меньшим риском сердечных заболеваний
    • лучшим контролем аппетита
    • повышением физической выносливости

    Одним из факторов, увеличивающих показатель GI продукта, является процесс измельчения и измельчения, при котором часто остается только крахмалистый эндосперм или внутренняя часть семени или зерна.В основном это крахмал.

    Этот процесс также удаляет другие питательные вещества, такие как минералы, витамины и пищевые волокна.

    Чтобы придерживаться диеты с низким ГИ, ешьте больше нерафинированных продуктов, таких как:

    • овес, ячмень или отруби на завтрак, чем менее рафинированный, тем лучше
    • цельнозерновой хлеб
    • коричневый рис
    • много свежих фруктов и овощи
    • свежие, цельные фрукты вместо сока
    • цельнозерновые макароны
    • салаты и сырые овощи

    Следует избегать нездоровой пищи, полуфабрикатов и продуктов со слишком большим количеством добавок.

    Углеводы нужны для здоровья, но они должны быть правильного вида.

    Соблюдение хорошо сбалансированной диеты, включающей необработанные углеводы, а также достаточный сон и физическая активность с большей вероятностью приведут к хорошему здоровью и соответствующей массе тела, чем сосредоточение внимания на конкретном питательном веществе или его исключение.

    .

    Структурная биохимия / углеводы / лектины - Викиучебники, открытые книги для открытого мира

    Из Wikibooks, открытые книги для открытого мира

    Перейти к навигации Перейти к поиску
    Найдите Структурная биохимия / углеводы / лектины в одном из родственных проектов Викиучебника: Викиучебник не имеет страницы с таким точным названием.

    Другие причины, по которым это сообщение может отображаться:

    • Если страница была создана здесь недавно, она может быть еще не видна из-за задержки обновления базы данных; подождите несколько минут и попробуйте функцию очистки.
    • Заголовки в Викиучебниках чувствительны к регистру , за исключением первого символа; пожалуйста, проверьте альтернативные заглавные буквы и подумайте о добавлении перенаправления здесь к правильному заголовку.
    • Если страница была удалена, проверьте журнал удалений и просмотрите политику удаления.
    .

    глава 20 тестовый обзор Карточки

    Срок
    1) Что из перечисленного НЕ является основным процессом в желудочно-кишечной системе?
    A) пищеварение
    B) фильтрация
    C) абсорбция
    D) секреция
    E) подвижность
    Определение
    Срок
    2) Что из следующего является правильным порядком слоев стенки желудочно-кишечного тракта, от просвета до внешней поверхности?
    A) слизистая оболочка  подслизистая оболочка  muscularis externa  сероза
    B) сероза  muscularis externa  подслизистая оболочка  слизистая
    C) серозная оболочка  слизистая оболочка  muscularis externa
    D) слизистая оболочка  подслизистая оболочка серозная оболочка
    D) слизистая оболочка  подслизистая оболочка  серозная оболочка
     сероза  мускулистая внешняя
    Определение
    слизистая, подслизистая, наружная мышечная, серозная
    Срок
    3) Что из следующего правильно перечисляет три части слизистой оболочки?
    A) серозная оболочка, muscularis mucosae, muscularis externa
    B) adventitia, muscularis externa, слизистая оболочка
    C) muscularis mucosae, слизистая оболочка, подслизистая основа
    D) слизистая оболочка, lamina propria, muscularis mucosae, lamina propria, lamina propria, lamina propria, lamina propria, lamina propria, lamina propria, lamina propria, lamina propria, muscularis mucosae
    a E) adventitia внешний
    Определение
    слизистая оболочка, lamina propria, muscularis mucosae
    Срок
    4) Энтероциты слизистой оболочки слизистого слоя классифицируются как ________ клетки, если они секретируют жидкости и ферменты в просвет, и ________ клетки, если они выделяют гормоны в кровоток.
    A) эндокринный: абсорбционный
    B) экзокринный: эндокринный
    C) эндокринный: экзокринный
    D) абсорбционный: эндокринный
    E) экзокринный: абсорбционный
    Определение
    Срок
    5) Какой слой слизистой является соединительной тканью, содержащей кровеносные и лимфатические сосуды?
    A) сероза
    B) подслизистое сплетение
    C) слизистая оболочка
    D) lamina propria
    E) muscularis mucosae
    Определение
    Термин
    6) Что представляет собой тонкий слой гладкомышечных клеток, сокращение которых перемешивает содержимое просвета и способствует контакту со слизистой оболочкой?
    A) muscularis mucosae
    B) muscularis externae
    C) muscularis internae
    D) сероза
    E) миентеральное сплетение
    Определение
    Срок
    7) Какой слой стенки желудочно-кишечного тракта представляет собой толстый слой соединительной ткани, придающей желудочно-кишечному тракту большую часть его эластичности и растяжимости?
    A) брюшина
    B) брыжейка
    C) сероза
    D) lamina propria
    E) подслизистая основа
    Определение
    Срок
    8) Кишечная нервная система получает данные от ________.
    A) только вегетативные нейроны
    B) только соматические моторные нейроны
    C) сенсорные нейроны только в стенке желудочно-кишечного тракта
    D) как автономные нейроны, так и сенсорные нейроны в стенке желудочно-кишечного тракта
    E) как соматические мотонейроны, так и сенсорные нейроны в стенке желудочно-кишечного тракта
    Определение
    вегетативных нейронов и сенсорных нейронов в стенке желудочно-кишечного тракта
    Термин
    9) Какая из следующих групп мышц находится в наружной мышце?
    A) внутренний круговой слой, способный только к медленным потенциалам
    B) внешний продольный слой, который требует нервных импульсов для сокращения
    C) мускулистая слизистая оболочка, которая смазывает при сокращении
    D) как внутренний круговой, так и внешний продольный слой
    E) внутренний круговой и внешний продольный слой и мышечная слизистая оболочка
    Определение
    как внутренний круговой, так и внешний продольный слой
    Срок
    10) Где возникают медленные потенциалы?
    A) миентеральное сплетение
    B) подслизистое сплетение
    C) muscularis mucosae
    D) внутренний круговой мышечный слой muscularis externa
    E) внешний продольный мышечный слой muscularis externa
    Определение
    внутренний круговой мышечный слой muscularis externa
    Срок
    11) ________ это слой эпителиальных клеток на внешней стороне серозной оболочки, который выделяет водянистую смазочную жидкость, которая облегчает скольжение органов друг относительно друга.
    A) подслизистая основа
    B) миентерия
    C) брыжейка
    D) мезотелий
    E) эндотелий
    Определение
    Срок
    12) Какая мембрана выстилает брюшную полость?
    A) сероза
    B) брюшина
    C) мезотелий
    D) брыжейки
    E) адвентиция
    Определение
    Срок
    13) Каково техническое слово для жевания?
    A) жевание
    B) мочеиспускание
    C) сегментация
    D) haustration
    E) размещение
    Определение
    Срок
    14) Поскольку пища разбивается на более мелкие кусочки во рту, она объединяется с ________, что облегчает ее движение вниз по пищеводу.
    A) желудочный сок
    B) амилаза
    C) слюна
    D) панкреатический сок
    E) химус
    Определение
    Термин
    15) Что такое кольцо скелетных мышц, которое регулирует движение болюса в пищевод?
    A) голосовая щель
    B) надгортанник
    C) верхний сфинктер пищевода
    D) нижний сфинктер пищевода
    E) пилорический сфинктер
    Определение
    верхний сфинктер пищевода
    Срок
    16) Желудочный рефлюкс возникает, когда материал течет в обратном направлении, через какую из следующих структур?
    A) голосовая щель
    B) надгортанник
    C) верхний сфинктер пищевода
    D) нижний сфинктер пищевода
    E) пилорический сфинктер
    Определение
    нижний сфинктер пищевода
    Срок
    17) Как называется смесь пищевых частиц с желудочным соком?
    A) болюс
    B) глазное дно
    C) химус
    D) слюна
    E) желудочный секрет
    Определение
    Срок
    18) Поток химуса из желудка в тонкий кишечник регулируется ________.
    A) голосовая щель
    B) надгортанник
    C) нижний сфинктер пищевода
    D) пилорический сфинктер
    E) гастроилеальный сфинктер
    Определение
    Срок
    19) Что такое руги?
    A) складки в тонкой кишке, которые увеличивают площадь поверхности для абсорбции
    B) складки в толстой кишке, которые увеличивают площадь поверхности для абсорбции
    C) складки в желудке, которые могут уплощаться для увеличения объема желудка
    D) подвижность паттерн толстой кишки
    E) паттерн моторики желудка
    Определение
    складки в желудке, которые могут уплощаться для увеличения объема желудка
    Срок
    20) Какие клетки секретируют пепсиноген в просвет желудка?
    A) Бокал
    B) G
    C) Теменная
    D) Главный
    E) Шея
    Определение
    Срок
    21) Какие клетки секретируют ионы водорода в просвет желудка?
    A) Бокал
    B) Теменная
    C) Главный
    D) Шея
    E) G
    Определение
    Срок
    22) Что секретируют париетальные клетки?
    A) только ионы водорода
    B) только пепсиноген
    C) только собственный фактор
    D) ионы водорода и пепсиноген
    E) ионы водорода и собственный фактор
    Определение
    Ионы водорода и собственный фактор
    Срок
    23) Что секретируют шейные клетки ямок желудка?
    A) ионы водорода
    B) пепсин
    .

    Смотрите также

 
 
© 2020 Спортивный клуб "Канку". Все права защищены.