Метаболический процесс это


Метаболический процесс: понятие, значение. Метаболизм

Многих людей, которые следят за своим здоровьем и фигурой, интересует метаболический процесс и его особенности. Это не случайно, ведь его нормальное функционирование способствует хорошему и крепкому здоровью. Нередко также излишний вес и бессонница связаны именно с проблемами в метаболическом процессе. Благодаря нашей статье, вы можете выяснить, что такое метаболизм и как его восстановить.

Метаболический процесс: что это такое? Факторы, связанные с ним

На сегодняшний день, говоря о снижении веса, врачи нередко упоминают термин "метаболизм". Что это такое простым языком? Как именно этот процесс связан с похудением?

Говоря простым языком, метаболизм - это обмен веществ, который проходит в теле абсолютно каждого живого существа. Под метаболическим процессом также подразумевают скорость, с которой организм преобразует пищу в энергию. Каждую секунду в нашем теле происходит больше тысячи химических процессов. Их совокупность - это метаболический процесс. Стоит отметить, что у мужчин обмен веществ происходит гораздо быстрее, чем у женщин. Скорость данного процесса напрямую связана не только с гендерной принадлежностью, но и с телосложением того или иного человека. Именно по этой причине у людей, которые имеют лишний вес, обмен веществ замедлен. Еще одни важные факторы, которые влияют на метаболический процесс, - это наследственность и общий гормональный фон организма. В случае если вы заметили, что обмен веществ в вашем теле стал происходить значительно медленнее, причиной этого может быть диета, стресс, физические нагрузки или принятие лекарственных препаратов.

Три разновидности обмена веществ

Вещество и энергия тесно связаны между собой. Именно они являются важными составляющими метаболического процесса. Существует три разновидности обмена веществ:

  • базовый;
  • активный;
  • пищеварительный.

Базовый метаболизм - это та энергия, которую организм расходует на поддержание и нормальное функционирование жизненно важных органов. Именно он обеспечивает работу сердца, легких, почек, пищеварительного тракта, печени и коры головного мозга.

Активный обмен веществ - это энергия, которая необходима для физической активности. Стоит отметить, что чем больше двигается человек, тем быстрее в его организме происходит метаболический процесс.

Пищеварительный метаболизм - это энергия, которая необходима организму для переваривания полученной пищи. Жирные и жареные блюда расщепляются гораздо дольше, чем полезные продукты. Именно по этой причине тем, кто желает снизить вес, но любит побаловать себя выпечкой, газированными напитками и многой другой вредной пищей, необходимо в срочном порядке пересмотреть свой рацион.

Конечные продукты метаболизма

С течением времени конечные продукты обмена веществ и органы, которые отвечают за метаболизм, существенно изменились. Выделительные процессы напрямую связаны с метаболическими. У млекопитающих в теле находится почка третьего типа - метанефрос. Именно она и участвует в образовании конечных продуктов.

Благодаря метаболизму образуются конечные продукты - вода, мочевина и углекислый газ. Все они в дальнейшем выходят из тела естественным путем. Органы обмена веществ, которые участвуют в процессе выведения из организма конечных продуктов:

  • почки;
  • печень;
  • кожа;
  • легкие.

Обмен белков в организме

Белок - это один из самых важных компонентов в нашем организме. Он участвует в формировании клеток, тканей, мышц, ферментов, гормонов и многих других важных составляющих нашего тела. Попавшие в организм белки расщепляются в кишечнике. Именно там они превращаются в аминокислоты и транспортируются в печень. За этот важный для человека процесс отвечает метаболизм. Стоит обратить внимание на то, что при употреблении большого количества белков возможно протеиновое отравление. Всемирная организация здравоохранения рекомендует употреблять не более чем 75 грамм на 1 килограмм массы тела в сутки.

Углеводы

Биологические процессы в организме играют важную роль в самочувствии человека. Метаболизм участвует в распаде не только белков, но и углеводов. Благодаря этому в организме образуются фруктоза, глюкоза и лактоза. Как правило, углеводы попадают в тело человека в виде крахмала и гликогена. При длительном углеводном голодании глюкоза попадает в кровь.

Углеводы - это основной источник энергии. При их недостатке у человека существенно снижается работоспособность и ухудшается самочувствие. Именно углеводы являются важным компонентом для нормального функционирования нервной системы. В случае если человек заметил у себя такие признаки, как слабость, головная боль, падение температуры и судороги, то ему необходимо в первую очередь обратить внимание на свой суточный рацион. Именно недостаток углеводов - частая причина плохого самочувствия.

Метаболический синдром

Метаболический синдром - это комплекс нарушений, которые наблюдаются у людей с избыточным весом. Как следствие плохого обмена веществ и ожирения, у человека может развиваться невосприимчивость инсулина. Такое заболевание может быть наследственным или приобретенным. Стоит отметить, что наряду с метаболическим синдромом происходят также и другие изменения в тканях и системах организма. При метаболическом синдроме у пациента может также наблюдаться внутреннее ожирение. Это может стать причиной развития сердечно-сосудистых заболеваний, диабета и атеросклероза. Главной причиной синдрома является нарушение обмена веществ. Наиболее подвержены ему те люди, которые употребляют фастфуд или едят на ходу. Нередко метаболический синдром встречается и у тех, кто ведет малоподвижный образ жизни. Ученые подтвердили, что избыточный вес напрямую связан с высокой смертностью от всех разновидностей рака.

Для того чтобы диагностировать метаболический синдром, нужно обращать внимание на уровень глюкозы в крови. Самым первым признаком является наличие жировой прослойки в области живота. Достаточно часто метаболический синдром связан с артериальным давлением. У людей, которые имеют проблемы с обменом веществ, оно беспричинно повышается.

Для того чтобы избавиться от метаболического синдрома, необходимо в первую очередь похудеть. Для этого потребуется как можно больше двигаться и пересмотреть свой рацион питания. Специалисты рекомендуют пациентам, которые жалуются на метаболический синдром, регулярно посещать массажный кабинет и бассейн. Данные процедуры позволяют существенно улучшить обмен веществ. Необходимо также помнить, что употребление алкоголя и курение снижают метаболический процесс. В борьбе с заболеванием от вредных привычек потребуется отказаться.

Главной причиной метаболического синдрома является неправильный рацион. В первую очередь необходимо отказаться от простых углеводов и заменить их сложными. Для этого отдавайте предпочтение кашам, а не мучному и сладкому. При борьбе с метаболическим синдромом пищу необходимо недосаливать. Важно включить в свой рацион овощи и фрукты. Они богаты витаминами и микроэлементами.

Гастрит: общая информация

Нередко нарушение метаболических процессов является причиной возникновения гастрита. При таком заболевании у пациента наблюдается воспаление слизистого слоя желудка. На сегодняшний день гастрит встречается как у взрослых, так и у детей. Первым симптомом является замедление обмена веществ. Как следствие, у пациента наблюдается упадок сил и недостаток энергии. При гастрите у человека может быть тяжесть в желудке, изжога, рвота, вздутие и метеоризм.

При гастрите пациенту противопоказана:

  • жирная пища;
  • алкоголь;
  • острое;
  • газированные напитки.

При первых симптомах гастрита необходимо в срочном порядке обращаться к лечащему врачу. Он не только посоветует диету, которая улучшит метаболические процессы в организме, но и назначит курс лекарственных препаратов.

Хронический панкреатит

Хронический панкреатит - это заболевание, причиной которого является нарушение обмена веществ. При таком заболевании наблюдается воспаление поджелудочной железы. Наиболее часто панкреатит встречается у женщин среднего и пожилого возраста. У больного панкреатитом наблюдаются следующие симптомы:

  • тошнота;
  • снижение аппетита;
  • боли в области желудка;
  • тошнота.

При панкреатите необходимо изменить свой рацион и включить в него полезные продукты. Нежелательно употреблять жирную и жареную пищу. Необходимо отдавать предпочтение продуктам, приготовленным на пару или в духовом шкафу. При диагностировании гастрита пациент должен полностью отказаться от вредных привычек.

Синдром раздраженного кишечника. Общая информация о заболевании

Синдром раздраженного кишечника - это совокупность расстройств метаболического процесса, которые продолжаются на протяжении 3 месяцев и более. Симптомами такого заболевания являются боли в желудке, метеоризм и нарушение стула. Как правило, синдром раздраженного кишечника наиболее часто встречается у молодых людей в возрасте 25-40 лет. К причинам возникновения заболевания относят нарушение питания, неактивный образ жизни и изменение общего гормонального фона.

При лечении синдрома раздраженного кишечника врач-гастроэнтеролог назначит больному целый ряд исследований и диету. Придерживаясь всех рекомендаций, пациент сможет быстро и безболезненно избавиться от заболевания.

Как ускорить метаболизм?

При борьбе с лишним весом в первую очередь мы стимулируем метаболические процессы. Однако далеко не каждый знает, как это делать правильно. Все необходимые рекомендации вы можете найти в нашей статье. Известно, что обмен веществ происходит наиболее быстро у тех людей, чей возраст колеблется от 11 до 25 лет. Многие специалисты утверждают, что скорость метаболизма напрямую зависит от темперамента человека. Изменение обмена веществ может быть связано с наличием инфекций в организме.

Для нормализации или ускорения метаболических процессов в первую очередь необходимо как можно больше двигаться. Для улучшения метаболизма рекомендовано комбинировать силовые и кардиотренировки. Рекомендованы также пешие вечерние прогулки. Это не случайно, ведь именно после этого обменные процессы продолжаются даже во сне.

Для восстановления обменных процессов многие специалисты рекомендуют раз в неделю посещать сауну и баню. Благодаря этому, вы помимо ускорения метаболизма, улучшите кровообращение. Если у вас нет возможности посещать баню и сауну, то вы можете проводить лечебные процедуры в ванной. Для этого необходимо использовать воду, температура которой составляет более 38 градусов.

Для ускорения метаболизма важно пересмотреть свой рацион. Необходимо ежедневно употреблять не менее двух литров воды. В рационе должны присутствовать только полезные и сбалансированные продукты.

Подведем итоги

Многих интересует метаболизм. Что это такое простым языком, и как его ускорить, вы можете узнать из нашей статьи. Нередко именно замедленный обмен веществ становится причиной не только лишнего веса, но и целого ряда заболеваний. При первых признаках отклонения от нормы обязательно обратитесь к врачу. Будьте здоровы!

Основные закономерности метаболических процессов в организме человека. Часть 1.

Метаболизм – обмен веществ и энергии - представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.

Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

Согласно современным представлениям расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющих три главные стадии катаболизма. На первой стадии полимерные органические молекулы распадаются на составляющие их специфические структурные блоки - мономеры. Так, полисахариды расщепляются до гексоз или пентоз, белки — до аминокислот, нуклеиновые кислоты — до нуклеотидов и нуклеозидов, липиды — до жирных кислот и глицерина. Эти реакции протекают в основном гидролитическим путем и количество энергии, освобождающейся на этой стадии, не превышает 1% от всей выделяемой в ходе катаболизма энергии, и почти целиком используется организмом в качестве тепла.

На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

Главным катаболическим процессом в обмене веществ принято считать биологическое окисление - совокупность реакций окисления, протекающих во всех живых клетках, - а именно дыхание и окислительное фосфорилирование. Интегральной характеристикой биологического окисления служит так называемый дыхательный коэффициент (RQ), который представляет собой отношение объема выделенного организмом углекислого газа к объему одновременно поглощенного кислорода. При окислении углеводов объем расходуемого кислорода соответствует объему образующегося углекислого газа и поэтому дыхательный коэффициент в этих случаях равен единице. При окислении жиров и белков такое соответствие отсутствует, поскольку кроме окисления углерода до углекислого газа часть кислорода расходуется на окисление водорода с образованием воды. Вследствие этого величины дыхательного коэффициента в случае окисления жиров и белков составляют соответственно около 0, 7 и 0, 8. Подавляющая часть белкового азота при окислении белка в организме переходит в мочевину. Поэтому по дыхательному коэффициенту и данным о количестве выделяемой мочевины можно определять соотношение участвующих в биологическом окислении углеводов, жиров и белков.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.

Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.

Статья добавлена 31 мая 2016 г.

Болезни и изменения клеточного метаболизма

Нейродегенеративные и онкологические болезни — самые распространенные возрастные патологии после болезней сердца и сосудов. Как показывают исследования, эти патологии тесным образом связаны с энергетическим обменом и митохондриальной дисфункцией. Детальное и масштабное изучение изменений клеточного метаболизма при развитии этих патологий способствует разработке более совершенных диагностических инструментов, позволяющих обнаруживать заболевание на самой ранней его стадии.

Спецпроект о клеточном энергетическом метаболизме, работе митохондрий и АТФ, а также о заболеваниях, связанных с нарушениями функций клеточных «батареек».


Спонсор спецпроекта — «БиоХимМак» — поставщик научного и медицинского оборудования в лаборатории России и стран СНГ.

Наверное, у каждого, кто начинает знакомиться с удивительной организацией наших клеток, возникает чувство восхищения невероятной сложностью внутриклеточного мира. Каждую секунду в миллиардах наших клеток протекают сложные и строго скоординированные процессы. И одним из таких очень важных процессов является производство в митохондриях главной энергетической молекулы — аденозинтрифосфата, или АТФ. Сегодня уже хорошо известно, что работа митохондрий очень тесно связана со здоровьем и продолжительностью жизни [1]. Митохондрии производят энергию для поддержания жизни, но при этом они же служат основными источниками активных форм кислорода, избыток которых для клеток губителен.

Энергетический обмен

Любой живой организм находится в постоянной связи с окружающей средой, непрерывно обмениваясь с ней веществом. В этом процессе можно выделить три этапа:

  1. поступление веществ;
  2. метаболизм;
  3. выделение конечных продуктов.

Внутриклеточный метаболизм, в свою очередь, включает в себя два типа реакций: катаболизм и анаболизм.

Катаболизм — это процесс расщепления и окисления органических молекул, приводящий к образованию тепла и энергетических молекул, АТФ. Именно за счет постоянного производства—расщепления последних съеденные нами калории направляются «по адресу»: гидролиз двух высокоэнергетических (макроэргических) связей в молекулах АТФ обеспечивает энергией всевозможные синтетические и транспортные процессы в клетках.

На первом этапе катаболизма под воздействием пищеварительных ферментов сложные органические соединения (белки, полисахариды, жиры) распадаются на более простые — аминокислоты, моносахариды, жирные кислоты и глицерин, — которые клетка использует для реакций анаболизма (пластического обмена) и получения энергии. Аминокислоты идут на синтез белков. Жирные кислоты выполняют энергетическую функцию, входят в состав клеточных мембран и служат субстратом для синтеза эйкозаноидов

На втором этапе происходит гликолиз — расщепление молекул глюкозы (рис. 1) до пировиноградной кислоты (ПВК). Дальнейший ход реакций зависит от присутствия или отсутствия кислорода в клетке. Если кислорода нет (анаэробный процесс), то ПВК у микроорганизмов и растений будет превращаться в этанол, а в организме животных — в молочную кислоту [2]. Каждый, кто подвергал себя тяжелым физическим нагрузкам, мог почувствовать конечный результат анаэробного метаболизма в виде боли и скованности в мышцах из-за скопившейся в них молочной кислоты.

Рисунок 1. Реакции гликолиза. На 10 этапах гликолиза (пяти подготовительных и пяти этапах синтеза АТФ) из шестиуглеродной молекулы глюкозы образуются две трехуглеродные молекулы пировиноградной кислоты. Полученная от расщепления глюкозы энергия запасается в «энергетической валюте» клетки — двух молекулах АТФ и двух молекулах НАДФ.

Если же кислород в клетке есть, ПВК будет расщепляться на углекислый газ и воду и тоже высвобождать заключенную в углеводной молекуле энергию. Этот процесс называется аэробным клеточным дыханием и проходит в специальных органеллах — митохондриях. Окисление в митохондриях дает гораздо больше энергии, чем гликолиз.

Митохондрии и производство АТФ

Рисунок 2. Митохондрия под электронным микроскопом.

Митохондрии — настоящее биологическое чудо, сотворенное эволюцией. Несмотря на очень маленький размер (в одной клетке может быть более 1000 митохондрий), эти органеллы поражают чрезвычайно сложной организацией (рис. 2). Они представляют собой вытянутые «пузырьки», окруженные двумя мембранами. Считается, что митохондрии сформировались в результате поглощения археями-фагоцитами пурпурных фотосинтезирующих бактерий, которые, приспосабливаясь к избытку кислорода, освоили аэробное дыхание [3], [4]. Мембраны митохондрий состоят из липидов и гидрофобных, нерастворимых в воде белков. (Здесь мы так подробно описываем строение митохондрий не случайно, а для того чтобы потом было понятно, как их нормальная работа и дисфункция влияют на здоровье.)

Строение мембран очень важно для процесса дыхания. Внешняя мембрана митохондрий — гладкая, а внутренняя — многократно складчатая. Эти складки (или кристы) позволяют увеличить рабочую площадь мембраны, что необходимо для размещения там всего комплекса белков, осуществляющих дыхание. Вначале окисляются углеродные атомы углеводов, жирных кислот и аминокислот до СО2 (гликолиз, цикл Кребса и β-окисление жирных кислот), а полученные таким образом электроны используются для образования НАДФ. Далее НАДФ окисляется молекулярным кислородом с образованием воды. НАДФ-оксидазная реакция сопровождается выделением очень большого количества свободной энергии (около 1,1 эВ при переносе одного электрона с НАДФ на кислород), которая может запасаться дыхательной цепью в виде трансмембранной разности электрохимических потенциалов ионов H+ (протонов).

Работа же дыхательных белков-ферментов похожа на работу насосов: передавая электроны друг другу, они перекачивают протоны в межмембранное пространство (см. видео 1). В результате внутренняя мембрана митохондрии заряжается подобно конденсатору. Создаются потенциалы: электрический (положительные заряды — снаружи митохондриальной мембраны, отрицательные — внутри органеллы) и химический (возникает разница концентраций протонов: внутри митохондрии их меньше, снаружи — больше). Известно, что электрический потенциал на мембране митохондрий, которая служит хорошим диэлектриком, достигает 200 мВ при толщине мембраны всего 10 нм [5]. Для сравнения: потенциал действия на мембранах нервных клеток при передаче сигнала достигает всего 30 мВ.

Видео 1. Как работает митохондрия

Накопившись в межмембранном пространстве, протоны, подобно электрическому току, устремляются назад, в митохондрию — туда, где их концентрация ниже. Однако они могут проходить только по специальным каналам АТФ-синтазы, встроенной во внутреннюю мембрану: протонный канал (ротор) этого фермента закреплен в мембране, а каталитический комплекс торчит внутрь митохондрии, в матрикс (рис. 3). Поток протонов раскручивает ротор, как река водяную мельницу. В результате ротор вращается с невероятной скоростью — 300 оборотов в секунду (см. видео 2)! И именно это вращение приводит к образованию высокоэнергетической молекулы — АТФ [6]. Подсчитано, что в сутки в организме взрослого человека синтезируется и расходуется около 40 кг АТФ, при этом жизнь каждой молекулы очень коротка.

Рисунок 3. Схема дыхательной цепи митохондрий.

Видео 2. Работа АТФ-синтазы в мембране митохондрии

Всё вышесказанное имеет самое непосредственное отношение к старению. Дело в том, что в процессе дыхания ферменты работают не совсем «чисто», и в результате образуются побочные продукты — активные формы кислорода (АФК). Пока человек молод и здоров, образующиеся в митохондриях АФК не представляют для него ощутимой угрозы, так как легко нейтрализуются организмом. Но когда человек стареет, ведет нездоровый образ жизни или имеет генетическую предрасположенность к определенным болезням, его защитные системы дают сбой, рушась одна за другой.

Жирные кислоты и дисфункция митохондрий

То, что старение и возрастные патологии сопровождаются дисфункцией митохондрий, которые начинают производить меньше АТФ и хуже обновляться, уже ни у кого не вызывает сомнения. Выяснилось также, что дисфункция митохондрий и старение тесным образом связаны с повышением уровня свободных жирных кислот в крови [7], чему сильно способствуют малоподвижность и нерациональное питание. Жирные кислоты, попадая в клетку, способны напрямую снижать синтез АТФ, разобщая окисление и фосфорилирование. Этот связанный с терморегуляцией организма феномен был открыт еще шесть десятилетий назад академиком Скулачевым и его коллегами [8]. Снижение синтеза АТФ, в свою очередь, запускает сразу несколько негативных цепных реакций, связанных с возрастными болезнями и старением в целом.

И вот что происходит. Повышение уровня свободных жирных кислот в организме приводит к резистентности к инсулину: инсулинзависимые клетки перестанут реагировать на этот гормон. В результате нарушается усвоение глюкозы и жирных кислот, ухудшается окисление последних. Дело в том, что характерный для состояния инсулинорезистентности высокий уровень инсулина активирует целый каскад реакций, который блокирует работу фермента карнитинпальмитоилтрансферазы I (СРT1), участвующего в переносе жирных кислот внутрь митохондрий [9]. Из-за этого ухудшается синтез АТФ, а жирные кислоты накапливаются в цитоплазме клеток, вызывая эффект липотоксичности. Кроме резистентности к инсулину, избыток жирных кислот в организме вызывает резистентность к еще одному «пищевому» гормону — лептину. А из-за этого страдает функция одного из главных участников биогенеза (обновления) митохондрий — коактиватора рецептора гамма, активируемого пролифераторами пероксисом (PGC-1α). В итоге митохондрии производят меньше АТФ, стареют, погибают и провоцируют гибель клеток путем апоптоза [10].

Ну и наконец, избыток жирных кислот вызывает стресс эндоплазматического ретикулума (ЭПР) — внутриклеточного органоида, участвующего в синтезе белков и множестве других процессов. При стрессе ЭПР в цитоплазму высвобождаются ионы кальция, способные вызывать дисфункцию и гибель митохондрий [11]. Ионы кальция могут накапливаться в клетке и по другой причине — из-за ухудшения работы ионных насосов, откачивающих кальций из клетки. А причиной этому служит нарушение работы митохондрий, сопровождающееся снижением синтеза АТФ, без которого отказываются работать ионные насосы. В итоге формируется порочный круг: снижение выработки АТФ приводит к дисфункции митохондрий, что еще больше снижает выработку АТФ, и т.д.

Жирные кислоты, церамиды и повреждения нейронов

Как выяснилось, избыток жирных кислот и дисфункция митохондрий напрямую связаны с возникновением возрастных нейродегенеративных патологий. Надо сказать, что клетки нервной системы — самые уязвимые для возрастного окислительного стресса и снижения синтеза АТФ. Такая исключительная чувствительность нейронов к дефициту энергии и повышению генерации АФК объясняется несколькими причинами.

Во-первых, нервная ткань в силу своей физиологии нуждается в наибольшем потреблении кислорода. Вследствие этого в митохондриях нейронов происходит интенсивный окислительный метаболизм, который и становится основной причиной повышенной генерации АФК.

Во-вторых, из-за того, что мембраны нейронов содержат много ненасыщенных жирных кислот, они легко подвергаются перекисному окислению липидов. Так как активность антиоксидантных систем в ткани головного мозга ниже, чем в других органах, а с возрастом сокращается и количество некоторых ферментов-антиоксидантов, становится понятным, почему клетки нервной системы наиболее чувствительны к окислительным повреждениям [12].

В настоящее время известно несколько факторов, повреждающих нейроны. Среди них — белки, образующие внутри- и внеклеточные агрегаты (β-амилоидный белок и другие), а также церамиды и липофусцин. На их количество влияет прежде всего избыток жирных кислот в организме. Отягчающим обстоятельством в этом случае выступает чрезмерное содержание насыщенных кислот (пальмитиновой и стеариновой) в пищевом рационе. Всё это вместе служит мощным стимулом развития разнообразных нейродегенеративных заболеваний, таких как болезнь Альцгеймера [13], [14].

Но каким же образом пальмитиновая кислота может способствовать нейродегенерации? Установлено, что из-за избытка этой кислоты накапливаются церамиды, которые участвуют в регуляции терминальной дифференцировки, пролиферации и апоптоза нейронов. Посредством нескольких химических реакций они воздействуют на регуляторы клеточного цикла, повышая концентрацию ингибиторов киназ p21/SDI1 и p27/KIP1. Таким образом церамиды останавливают клеточный цикл, что, в свою очередь, активирует главного «стража генома» — белок р53 — и «насылает» на клетку апоптоз [15]. Кроме этого, при деградации церамида образуется вещество сфингозин, обладающее цитотоксическим действием и способное вызывать как апоптоз, так и некроз клеток. Но и это еще не всё. Обнаружено, что накопление насыщенных жирных кислот (пальмитиновой и стеариновой) стимулирует специальные клетки головного мозга (астроглию) на эндогенный (внутренний) синтез церамидов. Эти произведенные церамиды запускают цепную реакцию следующего вида: церамиды → повышение секреции провоспалительных цитокинов и оксида азота → увеличение производства АФК и окислительный стресс → активация стресс-регулируемых киназ (CDK5 и GSK-3) в нейронах → образование β-амилоидного белка и гиперфосфорилирование τ-белка [16].

Нейродегенеративные патологии и дисфункция митохондрий

Сегодня важнейшими и самыми распространенными нейродегенеративными патологиями считают болезни Альцгеймера, Паркинсона, Хантингтона, а также боковой амиотрофический склероз. Их возникновение связывают со структурными изменениями различных белков, приводящими к образованию внутриклеточных агрегатов. К таким белкам относятся:

Болезнь Альцгеймера (БА) — тяжелое нейродегенеративное заболевание, для которого характерны синаптическая дисфункция и гибель нейронов, что сопровождается снижением когнитивных способностей: ухудшением памяти и мышления, постепенной потерей социальных и моторных навыков [17]. В зоне риска развития болезни находятся в основном пожилые люди. Лишь 1–2% людей в возрасте до 65 лет страдают БА. Согласно одной из гипотез развития БА — амилоидной, — болезнь возникает из-за накопления в головном мозге агрегатов β-амилоида. Этот пептид состоит из 39–43 аминокислотных остатков и является фрагментом крупного трансмембранного белка под названием предшественник бета-амилоида (amyloid precursor protein, APP). Находясь в избытке, молекулы β-амилоида начинают «склеиваться» и образовывать нерастворимые бляшки (рис. 4). Именно в таком состоянии белок нарушает работу нервных клеток и вызывает симптомы БА. У страдающих БА в пораженных участках мозга находят большое количество амилоидных бляшек и нейрофибриллярных клубков [18].

Рисунок 4. Образование амилоидной бляшки у генно-инженерных мышей (показано длинной стрелкой). На 6-й день уже видна дистрофия нейрона (короткая стрелка). Синим цветом обозначены отложения амилоида, зеленым — нейроны. Длина масштабной линейки — 20 мкм; снимки сделаны с помощью мультифотонного микроскопа.

Однако амилоидная гипотеза — не единственная, объясняющая возникновение БА. В 1993 году Аллен Роузес, профессор Университета Дьюка, предложил еще одну гипотезу возникновения БА — генетическую, связанную с геном APOE, кодирующим аполипопротеин Е (ApoE). Выяснилось, что наследование одного из вариантов гена APOE — APOE4 — в несколько раз повышает шансы заболеть БА. Всё больше исследователей склоняются к мысли, что β-амилоид излишне «демонизирован» и не является первопричиной развития БА. Неудавшаяся терапия, направленная на очистку клеток от β-амилоида, подтверждает, что с этой болезнью не всё до конца ясно [19].

Болезнь Паркинсона (БП) — еще одно тяжелое и довольно распространенное возрастное нейродегенеративное заболевание. У больных БП в нейронах черной субстанции накапливается α-синуклеин, который образует особые гранулы — тельца Леви. Надо сказать, что существует так называемая деменция с тельцами Леви, для которой характерно скопление многочисленных телец Леви в кортикальных и субкортикальных нейронах и развитие прогрессирующего когнитивного расстройства уже в первый год заболевания. Но пока не совсем ясно, считать ли эту деменцию формой БП или же правильнее ее рассматривать как отдельное заболевание. В случае БП скопления телец Леви приводят к дисфункции нейронов и их гибели, при этом характерно поражение областей мозга из состава так называемого нигростриарного дофаминового пути. Этот путь регулирует двигательную активность, снижая напряжение в мышцах. Вот почему, когда гибнут дофаминовые нейроны, у больных возникают соответствующие симптомы: нарастающее повышение мышечного тонуса и дрожание рук. Кроме нарушения моторных функций для БП характерны и другие симптомы, связанные с нарушением сна, депрессией, тревогой, ухудшением зрения и замедлением мышления [20].

Болезнь Хантингтона (БХ) — тоже не слишком редкое нейродегенеративное заболевание [21]. Как и в случае болезни Альцгеймера, для патогенеза БХ характерно образование токсичных белковых агрегатов с участием мутантных форм белков, которые синтезируются в нервной ткани. Но если к основному «виновнику» БА, β-амилоиду, у ученых есть вопросы, в случае с БХ сомнений гораздо меньше. Установлено, что именно генетические особенности — полиморфизмы определенных участков ДНК — приводят к появлению патологических форм белка хантингтина. Такой хантингтин способен к ассоциации с другими белками нервной ткани, в результате чего образуются нерастворимые токсичные агрегаты, повреждающие кору и полосатое тело головного мозга. Для БХ типичны всплески непроизвольной двигательной активности, эмоциональные расстройства и потеря памяти. В то же время нормальная физиологическая функция белка хантингтина в организме остается под вопросом. Предполагают, что он играет какую-то роль в эмбриогенезе [22].

Все три упомянутые патологии самым тесным образом связаны с дисфункцией митохондрий. Прежде всего, надо отметить, что ее развитие под действием дефектных белков, специфичных для нейропатологий, было установлено несколькими способами: in vitro (на клеточных линиях и внеклеточных системах) и in vivo (на трансгенных животных). Обнаружили и обратную связь: оказалось, что дисфункция митохондрий может стимулировать появление дефектных белков. Так, нарушение активности дыхательного комплекса I ведет к накоплению в нервных клетках гиперфосфорилированного τ-белка и α-синуклеина [23].

Со скоплением дефектных белков связали и уже упоминавшийся стресс эндоплазматического ретикулума. Один из таких белков, α-синуклеин, может снижать активность протеасом, что заканчивается стрессом ЭПР, увеличением производства АФК и инициацией апоптозных процессов. Это происходит потому, что из митохондрий высвобождается апоптозный фактор, цитохром С, который активирует «клеточных убийц» — каспазу-9 и каспазу-3 [24]. Как полагают, на начальных этапах нейродегенерации при БА накопление β-амилоида и гиперфосфорилирование τ-белка могут быть физиологическими механизмами защиты клетки от окислительного стресса, вызванного прогрессирующей митохондриальной дисфункцией. Однако при избыточном накоплении этих белков в клетке происходит сбой в работе митохондрий. Так, у пациентов с БА обнаружили, что β-амилоид накапливается в митохондриях и нарушает реакции гликолиза и цикла Кребса, активизирует продукцию АФК. Более того, β-амилоид способен напрямую подавлять синтез АТФ. Это возможно из-за структурного сходства белка с естественным ингибитором F(1)-субъединицы АТФ-синтазы митохондрий. Также β-амилоид может взаимодействовать с митохондриальной мембраной, формируя стабильные комплексы с двумя транслоказами, TOM40 и TIM23. Такие комплексы подавляют импорт в митохондрии белков, кодируемых ядерным геномом, — субъединиц IV и Vb цитохромоксидазы. На что органелла откликается увеличением производства агрессивного пероксида водорода.

Но и это еще не всё: белок — предшественник β-амилоида может формировать поры в мембранах митохондрий и других органелл, что нарушает ионный баланс в клетке и запускает ее апоптоз [25]. Также этот белок повышает активность фосфолипазы D, в результате изменяя фосфолипидный состав митохондриальных мембран, увеличивая концентрацию фосфатидилхолина, фосфатидилэтаноламина и фосфатидной кислоты и нарушая работу мембран. Известно, что β-амилоид может связывать гем, а это ведет к дефициту гема в клетке, из-за чего нарушается работа гем-содержащего IV комплекса электронтранспортной цепи митохондрий [26].

Но не только β-амилоид способен негативно влиять на митохондрии. В экспериментах с трансгенными грызунами, экспрессирующими ген хантингтина человека, обнаружили агрегацию этого белка в митохондриях с последующим развитием их дисфункции. Другой «зловредный» белок, α-синуклеин, накапливаясь во внутренней митохондриальной мембране, способен снижать активность дыхательного комплекса I. Как следствие, митохондрии увеличивают продукцию АФК [27]. Также обнаружено, что α-синуклеин, взаимодействуя с митохондриями, может стимулировать высвобождение из них цитохрома С, а значит, инициировать апоптоз.

В целом, можно сказать, что запуск апоптоза — характерный эффект белков, вызывающих нейродегенерацию. Они могут прямо или косвенно воздействовать на регуляторные белки, связанные с апоптозом: p53, Akt, Bad, Bax, Bcl-x(L) и кальцинейрин [28].

Также описано, что сверхсинтез белка — предшественника β-амилоида приводит к повреждению системы слияния—деления митохондрий. Негативно влияют на эту же систему и на утилизацию дефектных митохондрий аутофагосомами мутации гена паркина (PARK2), обнаруженные у больных БП. Дефектные формы τ-белка и хантингтина тоже мешают нормальной работе митохондрий, ухудшая тем самым энергообеспечение отростков нервных клеток и синаптическую передачу, вызывая дегенерацию синапсов [29].

Таким образом, белки, участвующие в развитии нейродегенеративных патологий, могут способствовать митохондриальной дисфункции посредством целого ряда механизмов. В свою очередь, уже возникшая дисфункция может усугублять патологические процессы, стимулируя появление дефектных белков и замыкая тем самым порочный круг развития болезни.

Эффект Варбурга

И напоследок стόит коснуться еще одного момента, связанного с патологиями и изменением клеточного метаболизма. В 1926 году немецкий биохимик Отто Варбург сравнил скорости образования молочной кислоты (лактата) в нормальных и опухолевых клетках. Оказалось, что опухолевые клетки потребляют очень много глюкозы, образуя при этом лактат. И делают это они гораздо быстрее, чем нормальные клетки: злокачественная ткань в эксперименте производила молочную кислоту в восемь раз активнее, чем это происходит в мышце, выполняющей физическую работу. Варбург установил, что раковые клетки используют гликолиз для получения энергии вне зависимости от доступности кислорода (рис. 5) [30]. В честь первооткрывателя этот феномен назвали эффектом Варбурга [2].

Рисунок 5. Энергообеспечение нормальной и раковой клеток. Синим квадратом обозначена поступающая в клетку глюкоза.

Обнаружив этот эффект, Варбург логично предположил, что его можно объяснить дисфункцией митохондрий в опухолевых клетках и нарушением окислительного фосфорилирования. Сегодня эта точка зрения ставится под сомнение, так как и в перерожденной ткани обнаруживают большое количество нормально работающих митохондрий. Около половины всей энергии опухолевые клетки получают из молекул АТФ, произведенных в митохондриях [31]. Эффект Варбурга проявляется в клетках уже в самом начале их трансформации в опухолевые. И это дает возможность проводить раннюю диагностику неопластических процессов: как только клетка начала расходовать глюкозу в повышенных масштабах, пора бить тревогу. Обнаружить эти процессы можно с помощью позитронно-эмиссионной томографии с использованием фторированного аналога глюкозы, 2-(18F)-2-дезокси-D-глюкозы.

Но зачем раковые клетки переходят на анаэробный гликолиз? Сейчас считается, что так они получают преимущество, заранее подготавливаясь к «тяжелым временам» — развитию гипоксии. А кроме этого, такой способ энергообеспечения дает клеткам возможность использовать промежуточные продукты гликолиза для анаболических реакций, усиления своей антиоксидантной защиты и отражения иммунной атаки организма [32].

Таким образом, изменения в метаболизме глюкозы и появление дефектных белков и внутриклеточных агрегатов могут говорить о начале развития патологии. Своевременное выявление подобных внутриклеточных процессов может сыграть решающую роль в предупреждении и терапии самых распространенных нейродегенеративных и онкологических заболеваний. А для того чтобы это было возможным, необходимо изучать фундаментальные аспекты патологий, связанные с работой митохондрий и энергетическим обменом. Сегодня уже разработаны системы, позволяющие заглянуть «вглубь» этих заболеваний и даже провести диагностику на самой ранней стадии их развития. Подробнее об этих системах, принципах их действия и исследованиях с их использованием расскажут следующие статьи спецпроекта.

Компания более 25 лет успешно занимается поставками научного и медицинского оборудования российских и зарубежных производителей: Beckman Coulter, Bio-Rad, Molecular Devices, Thermo Fisher Scientific, UVP, Seahorse Bioscience (part of Agilent), Immucor, MRC Holland и др. «БиоХимМак» обслуживает более 5000 научных и медико-диагностических лабораторий в России и странах СНГ.

Отдел молекулярной диагностики (Life Science MDx)

Молекулярная онкология, преимплантационный скрининг, цитогенетика, пренатальные и постнатальные исследования, диагностика инфекций, наследственных, мультифакторных заболеваний, детекция генномодифицированных источников и бактериального загрязнения в продуктах питания, криминалистические приложения — это лишь неполный перечень областей, которые входят в сферу интересов отдела.

Основные направления деятельности отдела:

  • комплексная поставка ПЦР- и иного оборудования для всех этапов анализа — пробоподготовки, амплификации, различных вариантов детектирования и архивирования результатов;
  • запуск оборудования и обучение персонала;
  • поставка расходных материалов и реагентов для диагностики и научных исследований;
  • поиск и поставка тест-систем для решения уникальных задач или использующих передовые технологии, не имеющие пока широкого распространения в диагностической практике.

Отдел работает как с инновационной продукцией (MLPA, PGS и NGS исследования, клеточная биоэнергетика Agilent Seahorse Bioscience), так и с зарекомендовавшими себя мировыми брендами — Beckman Coulter, Bio-Rad, Molecular Devices, UVP, Thermo Fisher Scientific.

Материал предоставлен партнёром — компанией «БиоХимМак»

  1. Вода студеная, вареная и кипящее молоко, или Еще раз об омоложении;
  2. Страшней клешней на свете нет...;
  3. Как появились митохондрии (рассказ, похожий на сказку);
  4. От сложного к простому: трудности симбиогенеза;
  5. Ржешевский А.В. (2016). Нанороботы внутри нас: как работают клетки. Популярная механика. 1, 31–34;
  6. Романовский Ю.М. и Тихонов А.Н. (2010). Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза — вращающийся молекулярный мотор. Успехи физических наук. 9, 931–956;
  7. Терёшина Е.В. (2007). Роль жирных кислот в развитии возрастного окислительного стресса. Успехи геронтологии. 20, 59–65;
  8. Скулачев В.П. (1998). Альтернативные функции клеточного дыхания. Соросовский образовательный журнал. 8, 2–7;
  9. Ржешевский А.В. (2014). Снижение синтеза АТР и дисфункция биологических мембран. Биохимия. 10, 1300–1315;
  10. Roger H. Unger. (2003). Minireview: Weapons of Lean Body Mass Destruction: The Role of Ectopic Lipids in the Metabolic Syndrome. Endocrinology. 144, 5159-5165;
  11. C. Xu. (2005). Endoplasmic reticulum stress: cell life and death decisions. Journal of Clinical Investigation. 115, 2656-2664;
  12. Иллариошкин С.Н. (2012). Нарушения клеточной энергетики при заболеваниях нервной системы. Нервные болезни. 1, 34–38;
  13. R. A Whitmer. (2005). Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. 330, 1360-0;
  14. β-амилоид: невидимый враг или тайный защитник? Запутанная тропка болезни Альцгеймера;
  15. L. M. Obeid. (2003). Ceramide, Stress, and a "LAG" in Aging. Science of Aging Knowledge Environment. 2003, 27pe-27;
  16. Бабенко Н.А., Семенова Я.А., Харченко В.С. (2009). Влияние обогащенной жирами диеты на содержание сфинголипидов и когнитивные функции у старых крыс. Нейрофизиология. 41, 309–315;
  17. На руинах памяти: настоящее и будущее болезни Альцгеймера;
  18. Смерть после жизни, болезнь Альцгеймера и почему мы хотим перемен;
  19. Болезнь Альцгеймера: ген, от которого я без ума;
  20. C. A. Davie. (2008). A review of Parkinson's disease. British Medical Bulletin. 86, 109-127;
  21. Как спасти Тринадцатую? (Перспективы лечения болезни Хантингтона);
  22. Francis O Walker. (2007). Huntington's disease. The Lancet. 369, 218-228;
  23. Gunter U. Hoglinger, Annie Lannuzel, Myriam Escobar Khondiker, Patrick P. Michel, Charles Duyckaerts, et. al.. (2005). The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 95, 930-939;
  24. W. W. Smith. (2005). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Human Molecular Genetics. 14, 3801-3811;
  25. Судаков Н.П., Бывальцев В.А., Никифоров С.Б., Сороковиков В.А., Клименков И.В., Константинов Ю.М. (2010). Дисфункция митохондрий при нейродегенеративных заболеваниях. Журнал неврологии и психиатрии. 9, 87–91;
  26. H. Atamna, K. Boyle. (2006). Amyloid-beta peptide binds with heme to form a peroxidase: Relationship to the cytopathologies of Alzheimer's disease. Proceedings of the National Academy of Sciences. 103, 3381-3386;
  27. L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, H. K. Anandatheerthavarada. (2008). Mitochondrial Import and Accumulation of  -Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry. 283, 9089-9100;
  28. Sandra M. Cardoso, Catarina R. Oliveira. (2005). The role of calcineurin in amyloid-β-peptides-mediated cell death. Brain Research. 1050, 1-7;
  29. Francis C. Chee, Amritpal Mudher, Matthew F. Cuttle, Tracey A. Newman, Daniel MacKay, et. al.. (2005). Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiology of Disease. 20, 918-928;
  30. Robert A. Gatenby, Robert J. Gillies. (2004). Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 4, 891-899;
  31. Peter L. Pedersen. (2007). Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 39, 211-222;
  32. Куликов В.А. и Беляева Л.Е. (2013). Метаболическое перепрограммирование раковых клеток. Вестник Витебского государственного медицинского университета. 2, 6–18;
  33. Melanie Meyer-Luehmann, Tara L. Spires-Jones, Claudia Prada, Monica Garcia-Alloza, Alix de Calignon, et. al.. (2008). Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature. 451, 720-724.

что это такое и как его ускорить?

Многие считают, что их многочисленные неуспешные попытки похудеть связаны с плохим метаболизмом, а не с неправильным подходом к снижению веса. Именно на этом заблуждении наживаются недобросовестные предприниматели, продавая за большие деньги «волшебные» пилюли для ускорения обмена веществ. 

Внимание! Следует понимать, что ни одной таблетке, экзотическому фрукту или чудо чаю не под силу по-настоящему запустить жиросжигающие процессы.

В этой статье будут опровергнуты основные мифы о метаболизме и приведены проверенные рекомендации по его ускорению.

Что такое метаболизм?

Метаболизм – это группа сложных процессов в организме, превращающих калории из пищи в полезную для жизнедеятельности человека энергию. Он зависит от: 

  • пищевой ценности потребляемых продуктов; 
  • регулярности и интенсивности физических нагрузок; 
  • температуры окружающей среды;
  • психоэмоционального состояния;
  • возраста; 
  • веса. 

На скорость усвоения пищи действуют разные факторы. Например, находясь в стрессовом состоянии, организм начинает вырабатывать кортизол, замедляющий пищеварительные процессы, и стимулирует запасание жировых отложений.

Внимание! Под метаболизмом подразумевают разные процессы – от переваривания сытного завтрака до дыхания во время сна, когда тело без участия мозга транспортирует кислород в органы.


Следует понимать, что у метаболизма нет скорости, а значит его классификации на медленный, нормальный и быстрый также не существует. Это обуславливается тем, что его скорость невозможно измерить. Но даже если бы это и было возможным, нет никаких эквивалентных единиц измерения, которыми можно было бы эту скорость описать.

Плохой обмен веществ: последствия и симптомы

Скорость усвоения пищи зависит от совокупности факторов, воздействующих на человека за определенный промежуток времени. То есть то, каким будет метаболизм – «быстрым» или «медленным», – зависит от образа жизни и реакции организма на окружающие раздражители. 

Иногда даже неправильное трактование грамотных рекомендаций приводит к тому, что все меры похудения в конечном итоге не дают никакого практического результата. Например, человек, обстоятельно взявшийся за свой лишний вес, резко сокращает рацион до сильного дефицита калорий, употребляет большое количество ананасов ежедневно (они содержат ферменты, расщепляющие жир) и каждый день интенсивно тренируется в зале. В лучшем случае стрелка на весах не сдвинется, в худшем – покажет несколько лишних кг.

Это объясняется просто. Такими кардинальными мерами организм загоняется в стрессовое состояние. Мозг подает сигналы о том, что энергетические запасы иссякают, так как при серьезных физических нагрузках пропала энергия, которая поступала с пищей. Единственный вариант при этом – интенсивное запасание новых жировых отложений, чтобы спасти организм от энергетического голода.

Как ускорить метаболизм?

Единственный эффективный вариант ускорения метаболизма заключается в комбинации активных тренировок (кардио + силовых), увеличения калорийности меню (в среднем до 15%) и соблюдения рациона, соответствующего нормам БЖУ (белков, жиров и углеводов). При таком режиме организм войдет в эффективный темп усвоения пищи и научится откладывать излишки энергии в мышцы, а не в жировые ткани.

Есть четыре правила, придерживаясь которых, можно нормализовать обмен веществ:

  1. Не переедать перед сном.
  2. Обогатить рацион источниками клетчатки.
  3. Ограничить потребление быстрых углеводов и заменить их на медленные.
  4. Следить за балансом жиров в организме, принимать добавки с омега-3.


Внимание! Чтобы улучшить метаболизм, необходимо правильно и регулярно питаться, а также уделять достаточно времени силовым и кардио тренировкам. А вот резкое ограничение рациона и различные диеты приведут к нарушению обменных процессов и набору веса.

Метаболизм и метаболический процесс | Everlive.ru

Согласно теории, поддерживаемой учёными разных стран, у каждого человека существует свой собственный оптимальный вес, который организм старается всеми силами поддерживать. Именно поэтому настойчивое желание похудеть или поправиться, со стороны организма вызывает активное сопротивление, и он будет делать всё возможное, чтобы вновь приблизить вес к своему естественному значению. Поэтому 95% похудевших снова прибавляют в весе. Их новый вес относительно низок для «нормального» индивидуального метаболизма. У подавляющего большинства людей сопротивление организма сильнее в сторону снижения веса, нежели набора, то есть он всегда будет стремиться к сохранению отложенных жировых запасов. Резкое снижение калорийности пищи и вовсе способно затормозить скорость обмена веществ на 45%. Возможно, это является защитным механизмом организма от голодной смерти.

Однако эту теорию поддерживают далеко не все учёные. И хотя они и не противоречат теории естественного оптимального веса, но считают, что метаболизм можно изменить определённым питанием и регулярной физической нагрузкой, при которой растет мышечная масса, увеличивается скорость обмена веществ и облегчается распад жиров. Но прежде всего, необходимо выяснить, что такое метаболизм и каковы принципы его действия.

Метаболизм – это химические реакции, возникающие с момента поступления в организм питательных веществ до момента выделения во внешнюю среду конечных продуктов этих реакций. Это сложный процесс преобразования потребляемой пищи в жизненную энергию. В метаболизм вовлечены все реакции, протекающие в живых клетках, результатом которых является строительство структур тканей и клеток. То есть, метаболизм можно рассматривать, как процесс обмена в организме веществ и энергии.

Живая клетка представляет собой высокоорганизованную систему, включающую различные структуры, а также специальные ферменты, способные эти структуры разрушить. Содержащиеся в клетке макромолекулы путём гидролиза могут распадаться на мелкие составляющие. В клетке обычно очень мало натрия и много калия, при этом она существует в среде, где мало калия и много натрия, причём проницаемость клеточной мембраны для обоих ионов одинакова. Отсюда вывод: клетка – это весьма далёкая от химического равновесия система.

Для поддержания клетки в химически неуравновешенном состоянии организму требуется производить определённую работу, для которой необходима энергия. Получение энергии для выполнения этой работы является непременным условием того, чтобы клетка пребывала в своём нормальном стационарном химически неуравновешенном состоянии. Одновременно в клетках выполняется и другая работа по взаимодействию со средой, к примеру: проведение нервных импульсов в нервных клетках, сокращение мышц – в мышечных, образование мочи в клетках почек и прочее.

Питательные вещества, попав внутрь клетки, начинают метаболизироваться, или претерпевать множество химических изменений и образовывать промежуточные продукты – метаболиты. Метаболический процесс в целом подразделяется на две категории: анаболизм и катаболизм. При анаболических реакциях из простых молекул путём биосинтеза образуются сложные молекулы, что сопровождается затратой свободной энергии. Анаболические превращения обычно восстановительные. При катаболических реакциях, наоборот, поступившие с пищей и входящие в состав клетки сложные компоненты расщепляются до простых молекул. Эти реакции преимущественно окислительные, сопровождающиеся выделением свободной энергии.

Основная часть калорий, поступивших с пищей, расходуется на поддержание температуры тела, переваривание пищи, внутренние процессы организма — это, так называемый базовый метаболизм.

Непосредственным источником энергии, используемой клеткой для производства работы, служит энергия, заключённая в молекуле аденозинтрифосфата (АТФ). В силу некоторых своих структурных особенностей, соединение АТФ богато энергией, и происходящий в ходе метаболического процесса разрыв связей фосфатных групп осуществляется таким образом, что высвободившаяся энергия может быть использована. Однако, в результате простого гидролиза разрыв фосфатных связей молекулы АТФ сделает высвобождённую для клетки энергию недоступной, поскольку метаболический процесс должен последовательно состоять из двух этапов с участием в каждом из них промежуточного продукта, в противном случае энергия выделяется в виде тепла и расходуется впустую. Молекула АТФ необходима практически для всех проявлений жизнедеятельности клеток, поэтому, неудивительно, что активность живых клеток в первую очередь направлена на синтез АТФ. Этот процесс состоит из сложных последовательных реакций с использованием потенциальной химической энергии, заключённой в молекулах жиров и углеводов.

Анаболизм тесно связан с катаболизмом, поскольку из продуктов распада питательных веществ получаются новые вещества. Если анаболизм направлен на образование составных структур клеток и тканей, то катаболизм превращает сложные молекулы в простые. Простые молекулы частично используются на биосинтез (образование органических веществ из простых соединений под действием ферментов-биокатализаторов), и частично выводятся из организма в виде продуктов распада, таких как мочевина, аммиак, диоксид углерода и вода.

Скорость метаболического процесса у всех людей разная. Важнейшим фактором, влияющим на скорость метаболизма, является масса тела, а точнее совокупность массы мышц, внутренних органов и костей. Чем масса тела больше, тем скорость обмена веществ выше. Обменные процессы у мужчин протекают, в среднем, на 10-20% быстрее, это связано с наличием у женщин большего количества жировых отложений, в то время как у мужчин мышечной ткани больше. По мнению учёных, метаболизм у женщин, перешагнувших 30-летний рубеж, снижается на 2-3% каждые последующие десять лет. Однако не только женщины, но и мужчины с возрастом подвержены риску снижения метаболизма. Как правило, это связано с недостатком двигательной активности и гормонального дисбаланса. Ускорить метаболизм можно с помощью регулярной физической нагрузки и дробного питания. Низкокалорийная диета с увеличением физической нагрузки значительно замедляет метаболический процесс – организм готовится к возможному голоданию и начинает интенсивно накапливать жир.

Также на метаболизм непосредственное влияние оказывают такие факторы, как наследственность и работа щитовидной железы. При недостатке гормона щитовидной железы L-тироксина, метаболизм заметно снижается, что вызывает «необъяснимое» ожирение. При избытке этого гормона, наоборот, метаболизм настолько ускоряется, что это может грозить физическим истощением. Примечательно, что и в том, и в другом случае катастрофически не хватает жизненной энергии.

Согласно исследованиям, состояние эмоционального фона напрямую влияет на выработку гормонов. В стадии волнения или возбуждения в кровь выбрасывается гормон адреналин, увеличивая скорость метаболизма. А в состоянии длительного стресса за день сжигаются сотни калорий. Однако, как бы это не казалось парадоксальным, хронический стресс ведёт к ожирению. Всё дело в том, что в состоянии стресса надпочечниками выделяется в кровь большое количество гормона кортизола, а он способствует повышению уровня сахара в крови и, если сахар не используется, то благодаря инсулину быстро переходит в жировые запасы.

Сохранить свой постоянный вес на протяжении всей жизни удаётся мало кому, поэтому его колебания в ту, или иную сторону – это, скорее всего, правило. Если не придавать огромного значения кратковременным незначительным колебаниям веса, то приблизительный график выглядит так: в 11-25 лет наблюдается минимальный вес с высокой энергетической потребностью; в 25-35 лет вес стабилизируется и начинает постепенно ползти вверх приблизительно до 65 лет, а после начинает снижаться. Однако это весьма усреднённая картина, поскольку каждый человек индивидуален и имеет присущий только ему одному свой собственный метаболический процесс.

Автор: Арина Михайлова

Что такое процесс метаболизма в организме и как его улучшить?

Наверное все неоднократно слышали это непонятное слово — метаболизм. Давайте разберемся что же такое процесс метаболизма в организме человека?

Что такое процесс метаболизма в организме

Сейчас очень популярно название заболевания «метаболический синдром», который как раз и является нарушением этого обмена веществ. Он характеризуется ожирением и появлением сердечно-сосудистых заболеваний, заболеваний опорно-двигательного аппарата и других.

Метаболизм — это процесс обмена веществ в нашем организме.

Он помогает усвоению веществ для жизнедеятельности нашего организма и одновременно выводу уже отработанных и ненужных веществ. Поэтому подробно рассмотрим, как же иметь нормальный или ускоренный метаболизм и что он собой представляет.

Здесь явно нарушен обмена веществ в организме

Метаболизм с точки зрения медицины

Все процессы в организме поддерживаются за счет постоянного обмена веществ. Все химические реакции в организме, это есть не что иное, как метаболизм.

Есть 2 стороны этого процесса:

  • Катаболизм – это поступление питательных веществ извне и переработка ее в энергию для питания клеток организма.
  • Анаболизм – это внутренние процессы в организме, выработка гормонов, ферментов, обновление клеточных структур.

Оба этих процесса идут одновременно и постоянно, если где-то происходит сбой в организме, то, соответственно, мы заболеваем.

Рекомендуем прочитать: ТОП-5 самых вредных групп продуктов для кожи лица.

Виды метаболизма

Абсолютно все процессы в организме требуют энергии, процесс дыхания, когда мы двигаем руками и ногами, когда мы едим, когда спим, в меньшей степени, но организм тоже тратит на это энергию.

Существует два вида метаболизма:

Основной или постоянный, благодаря ему организм живет. Иногда он требует больших затрат энергии, иногда меньших, но он постоянно протекает.

Дополнительный метаболизм связан с физической нагрузкой и с пищей, которую необходимо переваривать.

Быстрый метаболизм — это физиологическая особенность определенного человека, благодаря ему он все время остается стройным. А вот более медленный метаболизм принесет человеку лишние килограммы. Все это свойства основного метаболизма.

Факторы, влияющие на скорость обмена веществ

Все факторы делятся на два типа. Те, которые статические и их невозможно изменить, и те, которые, поддаются изменению, их называют динамическими.

Постоянные, их нельзя изменить:

Те, которые поддаются изменению:

  • Вес тела
  • Питание
  • Физическая активность и образ жизни

На динамические факторы можно воздействовать с помощью ЗОЖ (здорового образа жизни), но они незначительно могут сдвинуть метаболизм в сторону ускорения. Статистические данные играют большую роль в этом процессе.

Как ускорить метаболизм

Чем быстрее процесс метаболизма, тем лучше для нашего организма, баланс «получил, переработал и вывел из организма» проходит на хорошей скорости, клетки быстрее обновляются и все процессы идут в более быстром темпе. Это все отражается и на нашем внешнем виде. С возрастом идет замедление метаболизма.

Есть полезные привычки для ускорения метаболизма:

Холодная вода ускоряет метаболизм на 30-40%. Если пить холодную воду и еще и обливаться прохладной водой, о чем всегда пишет и говорит в своих передачах доктор Бубновский, то метаболизм можно ускорить и самочувствие в разы улучшится. Только делать это необходимо постепенно.

Полноценный сон, а это в идеале 7-8 часов сна ежедневно. При нашем ритме жизни мало кто может это себе позволить, поэтому предлагается включать режим «День сурка», хотя бы в выходные дни и чередовать активный отдых с пассивным отдыхом.

Глубокое дыхание очень полезно для ускорения метаболизма, и для женщин лучше животом, и еще и при прогулках и лучше ежедневных перед сном по 30-40 минут в день или через день. Метаболизм увеличится в разы и живот тоже станет значительно меньше.

Физические упражнения в ритме «активная тренировка/отдых» около 15 минут в день, можно и несколько подходов делать, если располагаете временем. Ритм «активная тренировка/отдых» по времени разбивается так – 1-2 минуты активно тренируетесь, 15-30 секунд отдыхаете, восстанавливаете дыхание.

Откажитесь от жестких диет в пользу правильного питания. Распределите продукты по калорийности следующим образом, в первой половине дня – более калорийные, а вот во второй половине дня — нет. И не пытайтесь отказаться от каких-то продуктов совсем, это вредно для здоровья. Лучше понемногу, часто и полезные продукты. При жестких диетах идет замедление метаболизма и нарушается внутренний баланс в организме.

ЗОЖ всегда поможет ускорению процесса метаболизма и вашему здоровью!

Поделиться в социальных сетях

Каковы различные метаболические процессы? (с иллюстрациями)

Метаболические процессы - это последовательности биохимических реакций, которые происходят в живых клетках для поддержания жизни. Их можно разделить на два основных типа. Катаболические процессы или пути включают расщепление сложных молекул пищи на более мелкие единицы, которые можно использовать в качестве строительных блоков для новых молекул или для получения энергии. Анаболические пути включают использование энергии для создания новых химических веществ, которые становятся компонентами клеток.Эти реакции возможны благодаря ряду органических катализаторов, известных как ферменты.

Катаболические процессы - это метаболические процессы, которые расщепляют пищу в организме, чтобы создать новые молекулы или обеспечить энергию.

Вместе два типа метаболических процессов позволяют трансформировать сырье или питательные вещества, которые усваиваются организмом, в ткани.Для этих трансформаций необходимо одно соединение, общее для всей клеточной жизни. Аденозинтрифосфат (АТФ) используется для хранения энергии, полученной из питательных веществ, таких как углеводы, и для высвобождения энергии, когда она требуется для создания новых молекул.

ДНК строится из нуклеотидов в ходе метаболического процесса, известного как анаболический.
Катаболические процессы

Некоторые организмы, такие как зеленые растения, сами производят пищу из неорганических материалов, в то время как другие, например животные, потребляют органические материалы для получения своего питания.Пищу, потребляемую животными, можно разделить на три основных типа - углеводы, липиды (жиры и масла) и белки. Пищеварение включает катаболические процессы, которые разбивают их на более простые компоненты. Например, относительно сложные углеводы, такие как полисахариды и дисахариды, расщепляются на глюкозу, а белки - на аминокислоты. Эти более простые соединения могут использоваться в анаболических процессах для создания новых материалов, или они могут быть далее расщеплены для получения энергии.

Анаболические процессы включают сокращения мышц, которые обеспечивают движение животных.

Клеточное дыхание - это процесс, при котором углеводная глюкоза (C 6 H 12 O 6 ) расщепляется на двуокись углерода (CO 2 ) и воду (H 2 O), производя энергию, которая хранится в АТФ.Процедура включает окисление, и там, где есть атмосферный кислород, он используется в так называемом аэробном дыхании. Это процесс, происходящий у животных, растений и некоторых микроорганизмов. Общая реакция может быть представлена ​​как

. Анабаолические процессы используют пищу, расщепленную катаболическими процессами, но если расщепляется больше, чем используется, это может вызвать накопление жира в организме.

В условиях отсутствия свободного кислорода происходит анаэробное дыхание. Это обнаруживается только у определенных микроорганизмов, которые живут в почве, разлагающемся органическом веществе, под водой, глубоко под землей и в кишечнике животных. Эти организмы используют альтернативы, такие как нитраты, сульфаты, фумарат и даже серу вместо свободного кислорода. Анаэробное дыхание намного менее эффективно, чем аэробный процесс, и производит гораздо меньше АТФ, но на раннем этапе истории Земли - до появления в атмосфере свободного кислорода - это была единственная возможная форма дыхания.

У животных липиды также окисляются до углекислого газа и воды, но первые несколько этапов разные. Химический состав организмов протекает в водной среде, но жиры и масла не смешиваются с водой. Первый шаг - эмульгировать эти вещества, что означает преобразование их в форму, которая будет смешиваться с водой, точно так же, как моющие средства помогают убирать разливы нефти.Это делается с помощью мылообразных веществ, содержащихся в желчи, которые желчный пузырь попадает в тонкий кишечник. Затем липиды расщепляются на жирные кислоты и глицерин, которые могут абсорбироваться через кишечник и затем подвергаться реакциям окисления, аналогичным тем, которые происходят с углеводами.

Белки - это очень большие сложные молекулы, состоящие из строительных блоков, известных как аминокислоты.Они метаболизируются с помощью различных реакций, которые расщепляют их на аминокислоты, которые могут абсорбироваться и затем использоваться в клетках. Как правило, белки не используются для выработки энергии, а аминокислоты используются для производства новых белков для наращивания тканей и мышц. В случаях, когда в рационе отсутствуют углеводы или жиры, а организм израсходовал свои жировые запасы, белки могут использоваться для выработки энергии путем окисления их аминокислот. В этих случаях организм может начать расщеплять мышечные белки.

Анаболические процессы

Также известные как биосинтез, это реакции, в которых энергия, запасенная в АТФ, расходуется катаболическими процессами.Они включают построение белков из аминокислот и построение ДНК из нуклеотидов. У животных также могут быть включены мышечные сокращения, приводящие к движению, поскольку они требуют использования накопленной энергии. У растений синтез глюкозы из углекислого газа и воды посредством фотосинтеза - еще один анаболический путь.

Метаболические процессы и масса тела

Энергия, полученная из пищи путем катаболизма, может сразу использоваться анаболическими процессами, но, если она не используется, большая часть ее сохраняется в виде жира.Количество энергии, которое можно извлечь из пищи, можно измерить в калориях. Точно так же можно измерить количество, израсходованное различными формами упражнений. Если постоянно потребляется больше калорий, чем используется, жир будет накапливаться, что приведет к увеличению веса. И наоборот, если калорий расходуется больше, чем потребляется, организм будет получать энергию, используя свои жировые запасы, теряя вес.

Клетки питаются от АТФ, который в основном синтезируется митохондриями..

Метаболизм - лучший канал здоровья

Метаболизм относится ко всем химическим процессам, постоянно происходящим внутри вашего тела, которые обеспечивают жизнь и нормальное функционирование (поддержание нормального функционирования в организме называется гомеостазом). Эти процессы включают те, которые расщепляют питательные вещества из нашей пищи, и те, которые строят и восстанавливают наше тело.

Для построения и восстановления тела требуется энергия, которая в конечном итоге поступает из пищи.

Количество энергии, измеряемое в килоджоулей (кДж), которое сжигает ваше тело в любой момент времени, зависит от вашего метаболизма.

Достижение или поддержание здорового веса - это акт равновесия. Если мы регулярно едим и выпиваем больше килоджоулей, чем необходимо для нашего метаболизма, мы сохраняем его в основном в виде жира.

Большая часть энергии, которую мы используем каждый день, уходит на поддержание правильного функционирования всех систем нашего тела. Это вне нашего контроля. Однако, когда мы тренируемся, мы можем заставить метаболизм работать на нас. Когда вы активны, тело сжигает больше энергии (килоджоулей).

Два процесса обмена веществ


Наш метаболизм сложен - проще говоря, он состоит из двух частей, которые тщательно регулируются организмом, чтобы обеспечить их баланс.Их:

  • Катаболизм - расщепление пищевых компонентов (таких как углеводы, белки и пищевые жиры) на более простые формы, которые затем можно использовать для получения энергии и основных строительных блоков, необходимых для роста и восстановления.
  • Анаболизм - часть метаболизма, в которой наш организм строится или восстанавливается. Анаболизм требует энергии, которая в конечном итоге поступает из нашей пищи. Когда мы едим больше, чем необходимо для ежедневного анаболизма, избыток питательных веществ обычно откладывается в нашем теле в виде жира.

Скорость метаболизма

Скорость метаболизма (или общие затраты энергии) можно разделить на три компонента, а именно:

  • Базальный уровень метаболизма (BMR) - даже в состоянии покоя организму требуется энергия (килоджоули) для правильного функционирования всех его систем (таких как дыхание, поддержание сердцебиения для циркуляции крови, рост и восстановление клеток и регулировка уровня гормонов). На BMR тела приходится наибольшее количество энергии, расходуемой ежедневно (50–80 процентов от вашего ежедневного потребления энергии).
  • Термический эффект пищи (также известный как термогенез) - ваше тело использует энергию для переваривания потребляемых вами продуктов и напитков, а также поглощает, транспортирует и сохраняет их питательные вещества. На термогенез приходится около 5–10% используемой вами энергии.
  • Энергия, используемая во время физической активности - это энергия, используемая при физическом движении, и она наиболее сильно зависит от того, сколько энергии вы используете каждый день. Физическая активность включает запланированные упражнения (например, пробежку или занятия спортом), но также включает в себя все побочные действия (например, развешивание стирки, игры с собакой или даже ерзание!).

При умеренно активном человеке (30–45 минут физической активности умеренной интенсивности в день), этот компонент составляет 20 процентов нашего ежедневного потребления энергии.

Скорость основного обмена (BMR)

BMR означает количество энергии, необходимое вашему организму для поддержания гомеостаза.

Ваш BMR в значительной степени определяется вашей общей мышечной массой, особенно мышечной массой, потому что для поддержания мышечной массы требуется много энергии. Все, что снижает мышечную массу, снижает ваш BMR.

Поскольку на ваш BMR приходится значительная часть вашего общего потребления энергии, важно сохранить или даже увеличить мышечную массу с помощью упражнений при попытке похудеть.

Это означает сочетание упражнений (особенно упражнений с весовой нагрузкой и упражнений с отягощениями для увеличения мышечной массы) с изменениями в сторону более здорового режима питания, а не только с диетическими изменениями, поскольку потребление слишком малого количества килоджоулей стимулирует организм замедлять метаболизм для сохранения энергии.

Поддержание сухой мышечной массы также помогает снизить вероятность травм во время тренировок, а упражнения увеличивают ежедневные затраты энергии.

Средний мужчина имеет BMR около 7 100 кДж в день, в то время как средняя женщина имеет BMR около 5 900 кДж в день. Расход энергии постоянный, но скорость меняется в течение дня. Уровень расхода энергии обычно самый низкий ранним утром.

Факторы, влияющие на наш BMR

На ваш BMR влияют несколько факторов, действующих в сочетании, в том числе:

  • Размер тела - более крупные взрослые тела имеют больше метаболизирующих тканей и больший BMR.
  • Количество безжировой мышечной ткани - мышцы быстро сжигают килоджоули.
  • Количество жировых отложений - жировые клетки «вялые» и сжигают гораздо меньше килоджоулей, чем большинство других тканей и органов тела.
  • Экстренная диета, голодание или голодание - потребление слишком небольшого количества килоджоулей стимулирует организм замедлять метаболизм для сохранения энергии. BMR может снизиться до 15 процентов, а если также будет потеряна мышечная ткань, это еще больше снизит BMR.
  • Возраст - метаболизм замедляется с возрастом из-за потери мышечной ткани, а также из-за гормональных и неврологических изменений.
  • Рост - младенцы и дети имеют более высокие потребности в энергии на единицу веса тела из-за энергетических потребностей роста и дополнительной энергии, необходимой для поддержания температуры тела.
  • Пол - как правило, у мужчин более быстрый метаболизм, потому что они, как правило, крупнее.
  • Генетическая предрасположенность - ваш метаболизм может частично определяться вашими генами.
  • Гормональный и нервный контроль - BMR контролируется нервной и гормональной системами.Гормональный дисбаланс может влиять на то, как быстро или медленно организм сжигает килоджоули.
  • Температура окружающей среды - если температура очень низкая или очень высокая, организму приходится усерднее работать, чтобы поддерживать нормальную температуру тела, что увеличивает BMR.
  • Инфекция или болезнь - BMR увеличивается, потому что организму приходится усерднее работать, чтобы построить новые ткани и создать иммунный ответ.
  • Объем физической активности - трудолюбивым мышцам нужно много энергии для сжигания.Регулярные упражнения увеличивают мышечную массу и учат тело сжигать килоджоули быстрее, даже в состоянии покоя.
  • Наркотики, такие как кофеин или никотин, могут увеличивать BMR.
  • Диетический дефицит - например, диета с низким содержанием йода снижает функцию щитовидной железы и замедляет метаболизм.

Термический эффект пищи

Ваш BMR повышается после еды, потому что вы тратите энергию на еду, переваривание и метаболизм только что съеденной пищи. Повышение происходит вскоре после того, как вы начали есть, и достигает пика через два-три часа.

Это повышение BMR может составлять от 2 до 30 процентов, в зависимости от размера обеда и типов съеденных продуктов.

Различные продукты повышают BMR на разную величину. Например:

  • Жиры повышают BMR на 0–5%.
  • Углеводы повышают BMR на 5–10%.
  • Белки повышают BMR на 20–30%.
  • Горячие острые продукты (например, продукты, содержащие перец чили, хрен и горчицу) могут иметь значительный термический эффект.

Энергия, используемая при физической активности

Во время напряженных или интенсивных физических нагрузок наши мышцы могут сжигать до 3000 кДж в час. Расход энергии мускулами составляет только 20 процентов от общего расхода энергии в состоянии покоя, но во время напряженных упражнений он может увеличиваться в 50 или более раз.

Энергия, используемая во время упражнений, - это единственная форма расхода энергии, которую мы можем контролировать.

Однако оценить энергию, потраченную во время упражнений, сложно, поскольку истинное значение для каждого человека будет варьироваться в зависимости от таких факторов, как их вес, возраст, состояние здоровья и интенсивность выполнения каждого действия.

Австралия имеет руководящие принципы физической активности, которые рекомендуют количество и интенсивность активности в зависимости от возраста и стадии жизни. Для нашего общего здоровья важно ограничивать время, в течение которого мы ведем малоподвижный образ жизни (сидеть или бездельничать), и обеспечивать хотя бы 30 минут физической активности умеренной интенсивности каждый день.

В качестве приблизительного ориентира:

  • Умеренная физическая нагрузка означает, что вы можете говорить во время тренировки, но не можете петь.
  • Энергичные упражнения означают, что вы не можете разговаривать и заниматься спортом одновременно.

Метаболизм и увеличение веса с возрастом


Мышечная ткань имеет большой аппетит к килоджоулей. Чем больше у вас мышечной массы, тем больше килоджоулей вы сожжете.

Люди склонны набирать жир с возрастом, отчасти потому, что тело медленно теряет мышцы. Неясно, является ли потеря мышечной массы результатом процесса старения или потому, что многие люди с возрастом становятся менее активными. Однако, вероятно, это больше связано с уменьшением активности. Исследования показали, что силовые тренировки и тренировки с отягощениями могут уменьшить или предотвратить потерю мышечной массы.

Если вам больше 40 лет, у вас уже есть какое-либо заболевание или вы какое-то время не тренировались, обратитесь к врачу перед началом новой фитнес-программы.

Гормональные нарушения обмена веществ


Гормоны помогают регулировать метаболизм. Некоторые из наиболее распространенных гормональных нарушений влияют на щитовидную железу. Эта железа выделяет гормоны для регулирования многих метаболических процессов, включая расход энергии (скорость, с которой сжигаются килоджоули).

Заболевания щитовидной железы включают:

  • Гипотиреоз (недостаточная активность щитовидной железы) - метаболизм замедляется, потому что щитовидная железа не вырабатывает достаточно гормонов.Частая причина - аутоиммунное заболевание Хашимото. Некоторые из симптомов гипотиреоза включают необычную прибавку в весе, летаргию, депрессию и запор.
  • Гипертиреоз (сверхактивная щитовидная железа) - железа выделяет большее количество гормонов, чем необходимо, и ускоряет метаболизм. Наиболее частой причиной этого состояния является болезнь Грейвса. Некоторые из симптомов гипертиреоза включают повышенный аппетит, потерю веса, нервозность и диарею.

Генетические нарушения обмена веществ

Наши гены - это схемы белков в нашем организме, а наши белки отвечают за пищеварение и метаболизм нашей пищи.

Иногда дефектный ген означает, что мы производим белок, который неэффективен для обработки нашей пищи, что приводит к нарушению обмена веществ. В большинстве случаев генетические нарушения обмена веществ можно лечить под наблюдением врача, уделяя особое внимание диете.

Симптомы генетических нарушений обмена веществ могут быть очень похожи на симптомы других нарушений и заболеваний, что затрудняет установление точной причины. Обратитесь к врачу, если подозреваете, что у вас нарушение обмена веществ.

Некоторые генетические нарушения обмена веществ включают:

  • Непереносимость фруктозы - неспособность расщеплять фруктозу, которая является разновидностью сахара, содержащегося во фруктах, фруктовых соках, сахаре (например, тростниковом сахаре), меде и некоторых овощах.
  • Галактоземия - неспособность превратить углеводную галактозу в глюкозу. Галактоза не встречается в природе сама по себе. Он вырабатывается, когда пищеварительная система расщепляет лактозу на глюкозу и галактозу. Источники лактозы включают молоко и молочные продукты, такие как йогурт и сыр.
  • Фенилкетонурия (PKU) - неспособность превращать аминокислоту фенилаланин в тирозин. Высокий уровень фенилаланина в крови может вызвать повреждение головного мозга.Следует избегать продуктов с высоким содержанием белка и тех, которые содержат искусственный подсластитель аспартам.

Куда обратиться за помощью

.

Метаболический процесс - определение метаболического процесса по The Free Dictionary

НАД является важным метаболитом, который участвует практически во всех метаболических процессах в организме, в первую очередь в энергетическом обмене и восстановлении клеток. Доктор Пот, изучающий хроно-питание, сказал: «У нас есть биологические часы, которые определяют, что каждые 24 часа каждый метаболический процесс имеет оптимальное время, когда что-то должно произойти. Ферментация - это метаболический процесс, при котором происходит потребление сахара в отсутствие кислорода. JPC11 активируется дозой формиата натрия, вещества, обнаруженного в организмах, включая крапиву и муравьев, и воздействует на метаболический процесс, вызывающий раковые клетки размножаются.Частые упражнения средней интенсивности также могут выступать в качестве естественного лекарства от проблем с сердцем, а также улучшать метаболические процессы у детей. Среди многих видов устойчивости к насекомым метаболическая устойчивость связана с метаболическим процессом инсектицида или абсорбцией токсина. в теле насекомых и модификации (обычно генетические или могут быть приобретены) в метаболическом процессе насекомых, которые могут предотвратить смерть этого насекомого. Всего 51 (44,7%) ген был отнесен к «метаболическому процессу» (рис. (а)), что указывает на то, что этот процесс тесно связан с функцией митохондрий.Подобное всасыванию устройство втягивает ткань и охлаждает жировые клетки, которые сжимаются, разрушаются и удаляются естественным метаболическим процессом организма ». Причастный ген участвует в метаболическом процессе, известном как обработка пузырьков. В отличие от обычных карт метаболизма В ходе этого процесса метаболическая сеть Clamydomonas reinhardtii в масштабе генома была реконструирована и преобразована в вычислительную модель, которая обеспечивает прогнозное понимание того, как генные манипуляции могут влиять на такие факторы, как рост и производство липидов.«Следовательно, мутация генов, участвующих в основном метаболическом процессе, может неожиданно повлиять на поведение человека». Небольшой молекулой, использованной в исследованиях, был лекарственный препарат лапатиниб (Tykerb), который нарушает важный метаболический процесс рака груди, называемый сигнальным путем Her2 / neu. .

Метаболизм

Метаболизм - это общий термин для всех химических реакций, которые расщепляют или «сжигают» пищу, обеспечивая энергию для работы организма. Слово «ожог» используется сознательно, потому что выход энергии из пищи в метаболическом процессе человека сравним с энергией, получаемой при реальном сгорании. Энергия, получаемая из пищи, обычно выражается в диетических калориях, и рейтинг калорийности пищи может быть фактически получен путем сжигания ее в атмосфере чистого кислорода в калориметре для измерения выхода энергии от этого сжигания.

Как и при обычном горении, метаболизм пищи требует поступления кислорода и производит двуокись углерода в качестве продукта сгорания. Для различных пищевых продуктов можно указать типичный выход энергии, необходимое количество кислорода и ожидаемое количество выделяемого диоксида углерода. Вот некоторые ценности от Нельсона.

9000 0009 0009
Продукты питания Выделенная энергия
ккал / г
Требуется кислород
литров O 2 / г
CO 2
литров / г
Углеводы 4.1 0,81 0,81
Жир 9,3 1,96 1,39
Белок 4,0 0,94 0,75

Обратите внимание, что количество энергии, производимой для четырех видов пищи, примерно пропорционально количеству потребляемого кислорода, поэтому скорость метаболизма можно измерить, измерив скорость потребления кислорода.Однако количество углекислого газа, производимого четырьмя типами пищевых продуктов, различается, поэтому соотношение CO 2 / O 2 дает некоторую информацию о типе используемой пищи.

Среднее значение для трех видов пищи в приведенной выше таблице составляет 4,7 ккал выделяемой энергии на каждый литр потребляемого кислорода. В среднем взрослый человек в состоянии покоя потребляет около 16 литров кислорода в час. Это дает номинальную базальную скорость метаболизма 75 ккал / час, что соответствует 87 Вт.

Решающее значение для метаболического процесса имеет молекула аденозинтрифосфата (АТФ), которую биологи считают энергетической валютой жизни. Почти каждый процесс в организме, который использует энергию, получает ее от АТФ и в процессе превращает ее в АДФ. Энергия окисления пищи (метаболизм) используется для преобразования АДФ обратно в АТФ, делая эту энергию доступной для процессов организма. Один из основных путей этого - окисление глюкозы.

.

Метаболизм

Метаболизм - это ссылка на все химические реакции, происходящие в вашем теле. В частности, ваш метаболизм - это сумма всех энергетических преобразований, связанных с каждой химической реакцией в вашем теле. Это причина, по которой метаболизм обычно обсуждается с точки зрения фитнеса, физических упражнений и потери веса, потому что в конечном итоге он представляет собой регулирование вашего тела энергии или, другими словами, калорий. Продолжайте читать, чтобы узнать больше о метаболизме.

Чтобы понять, как работает метаболизм, сначала полезно понять простые, но фундаментальные концепции, перечисленные ниже:

  1. Источником энергии вашего тела является еда, которую вы едите. Когда вы едите пищу, вы потребляете энергию, хранящуюся в химической форме, количество которой можно измерить по калорийности (читайте статью с объяснением калорий) всего, что вы едите.

  2. Энергия не может быть создана или уничтожена, она может только изменить форму.Это первый закон термодинамики, и он управляет вашим метаболизмом (наряду со всем остальным в известной вселенной).

  3. Что касается метаболизма и человеческого тела, когда мы говорим, что калории (т.е. энергия) «сжигаются», это не означает, что калории исчезают. Мы знаем, что калории не могут исчезнуть, потому что калории - это единицы энергии, а это противоречит первому закону термодинамики (см. Пункт 2 выше). По сути, сжигание калорий означает, что энергия калорий преобразуется из химической формы, хранящейся в вашем теле, в тепловую или механическую форму, которая не хранится в вашем теле.

  4. Все химические реакции должны либо выделять энергию, либо поглощать энергию. Каждая химическая реакция в вашем теле должна сопровождаться высвобождением или поглощением энергии.

Теперь, когда вы понимаете фундаментальные концепции, управляющие метаболизмом, мы можем рассмотреть особенности метаболизма. Из пункта 4 в приведенном выше списке вы знаете, что существует два основных типа химических реакций: те, которые высвобождают энергию, и те, которые поглощают энергию.При обсуждении метаболизма эти типы реакций классифицируются как катаболические и анаболические соответственно. Более подробно они описаны ниже:

Катаболизм

Некоторые химические реакции в нашем организме разрушают молекулы питательных веществ (то есть молекулы из пищи, которую мы едим), чтобы высвободить полезную энергию. Это называется катаболизмом. Энергия, которая выделяется во время катаболических реакций, хранится в молекулах аденозинтрифосфата ( ATP ). Вы можете узнать больше о ATP в статье Exercise Energy Systems, но для целей этой статьи вам просто нужно знать, что ATP - это молекула энергии, генерируемая в результате катаболических реакций из пищи, которую мы едим, и которая используется для приводят в действие все процессы на клеточном уровне нашего тела.

Анаболизм

Некоторые химические реакции в нашем организме используют энергию ATP , доступную через катаболизм, для создания молекул, из которых состоят наши тела. Это называется анаболизмом (также известным как биосинтез). АТФ энергия, поглощаемая в анаболических реакциях, используется для создания всех молекул в нашем организме, включая, например, наши мышцы, жир и костную ткань.

Следовательно, катаболизм и анаболизм противоположны друг другу, и ваш общий метаболизм, в конечном счете, является суммой всех анаболических и катаболических реакций, которые происходят в вашем теле.Любая химическая реакция, происходящая в вашем теле, должна быть катаболической или анаболической, других альтернатив нет. По сути, вы можете думать о катаболизме как о высвобождении организмом энергии в форме ( ATP ), оптимизированной для использования на нашем клеточном уровне, тогда как анаболизм можно рассматривать как использование высвободившейся энергии ATP для создания молекулы, которые построены в наших телах.

Однако энергия ATP , выделяемая в результате катаболизма, не всегда используется для анаболизма.После того, как энергетическая молекула ATP была произведена в результате катаболических реакций, ее можно использовать одним из двух способов:

  1. Молекула ATP может использоваться для усиления наших анаболических реакций, поглощающих энергию. Как уже говорилось, это реакции, которые создают все молекулы, из которых состоит наше тело. Следовательно, энергия, используемая при анаболизме, будет оставаться «хранимой» внутри нашего тела в рамках химических связей синтезированных молекул, независимо от того, являются ли они мышцами, жиром, костями или любым другим типом молекул.

  2. ИЛИ

  3. Молекула АТФ может использоваться для усиления движения наших мышц и поддержки неанаболических аспектов работы нашего тела на клеточном уровне. Этот тип использования энергии и подразумевается под термином «сжигание калорий». Энергия, используемая таким образом, преобразуется в форму энергии, в конечном итоге либо тепловую, либо механическую энергию, которая не хранится в наших телах, и поэтому ее можно считать «сожженной».

До этого момента в этой статье обсуждалось технически ориентированное научное определение метаболизма и связанные с ним концепции катаболизма и анаболизма. Однако в контексте общего использования, связанного с фитнесом, набором веса и потерей веса, для истинного понимания вашего метаболизма большее значение имеет концепция основного обмена, или BMR , а не катаболизм и анаболизм. Прежде чем продолжить обсуждение метаболизма, вы должны прочитать приведенные ниже определения, чтобы правильно понять дальнейшее обсуждение:

Скорость основного обмена ( BMR )

BMR представляет собой количество энергии, обычно измеряемое в калориях, которое ваше тело должно сжигать, чтобы оставаться в живых , пока вы находитесь в состоянии покоя и не перевариваете пищу .Калории, сожженные для удовлетворения ваших требований BMR , включают только те, которые используются для поддержания жизни ваших тканей и поддержки функций ваших жизненно важных органов. Любая физическая активность и переваривание пищи требуют дополнительного сжигания калорий сверх требований BMR .

Ежедневное расходование калорий

Не путайте BMR с общим дневным расходом калорий. BMR представляет собой только часть (хотя обычно и большую часть) от общего количества калорий, которые вы сжигаете за день.Другие возможные способы сжигания калорий - это физическая активность и переваривание пищи. Таким образом, общее количество калорий, которые вы сжигаете за день (т. Е. Ваш дневной расход калорий), можно определить, сложив BMR , калории, которые вы сожгли для поддержки физической активности, и калории, которые вы сожгли до поддерживают переваривание пищи (обычно это 10% или около того от общего количества потребленных вами калорий, подробнее об этом читайте в нашей статье о термическом эффекте пищи), а именно:

  • Ежедневный расход калорий = BMR + калории, сожженные для поддержки физической активности + калории, сожженные для поддержки переваривания пищи

Вы можете попробовать наш калькулятор суточного расхода калорий, чтобы оценить общее количество калорий, которое вы сжигаете за данный момент день.

Что такое высокий метаболизм?

Человек с так называемым "высоким метаболизмом" - это тот, у кого относительно высокий BMR . Таким образом, высокий метаболизм означает, что по сравнению с низким метаболизмом необходимо сжигать больше калорий для удовлетворения жизненных потребностей в энергии (то есть для поддержания жизни тканей и поддержки функции жизненно важных органов). Люди с высоким метаболизмом сжигают больше калорий в состоянии покоя, чем люди с низким метаболизмом.

Что такое низкий метаболизм?

В отличие от высокого метаболизма, человек с так называемым «низким метаболизмом» - это человек с относительно более низким BMR .Низкий метаболизм означает, что по сравнению с высоким метаболизмом необходимо сжигать меньше калорий для удовлетворения жизненных потребностей в энергии (то есть для поддержания жизни тканей и поддержки функции жизненно важных органов). Люди с низким метаболизмом сжигают меньше калорий в состоянии покоя, чем люди с высоким метаболизмом.

Высокий метаболизм против низкого метаболизма

Основываясь на приведенных выше определениях «высокий метаболизм» и «низкий метаболизм», мы можем проиллюстрировать эффекты высокого метаболизма по сравнению с низким метаболизмом.Рассмотрим следующий сценарий:

Давайте сравним двух людей, которые идентичны во всех отношениях, кроме своего метаболизма, или BMR s. У одного человека метаболизм выше, у другого - ниже. Они оба потребляют 2200 калорий в день. У человека с более высоким метаболизмом BMR из 1700 калорий в день. Человек с более низким метаболизмом имеет BMR из 1400 калорий в день. Оба человека сжигают 200 калорий в день из-за термического эффекта пищи во время пищеварения.Оба человека сжигают 500 калорий в день из-за физической активности. Следовательно, в обычный день человек с высоким метаболизмом сжигает 1700 + 200 + 500 = 2400 калорий, тогда как человек с низким метаболизмом сжигает 1400 + 200 + 500 = 2100 калорий.

Итак, если мы предположим, что оба человека хотят сохранить свой текущий вес, это означает, что им нужно будет потреблять такое же количество калорий, которое они сжигают, или, в этом примере, 2400 калорий для человека с высоким метаболизмом и 2100 калорий. калорийность для человека с низким метаболизмом.Если вместо этого мы предположим, что оба человека потребляют 2400 калорий, это будет означать, что человек с высоким метаболизмом будет поддерживать постоянный вес, тогда как человек с низким метаболизмом будет набирать вес, потому что их ежедневное потребление калорий (т.е. 2400 калорий) превышает их калорийность. расход (т.е. 2100 калорий).

Как увеличить ваш метаболизм

На основании приведенного выше примера можно было бы подумать, что изменение их метаболизма - это решение проблемы набора веса, потери веса или поддержания веса.Хотя, безусловно, возможно и часто полезно увеличить ваш метаболизм, важно понимать, что ваш метаболизм не определяет ваш вес. Скорее, ваш метаболизм просто определяет наиболее значительную часть ваших суточных потребностей в калориях. Вместо того, чтобы пытаться изменить свой метаболизм для достижения желаемой цели набора веса или снижения веса, рекомендуемый и более эффективный подход - адаптировать потребление калорий и / или уровень физической активности для достижения калорийного баланса, который позволит вам достичь ваша цель (подробнее по этой теме вы можете прочитать здесь: Замедленный метаболизм - виноват ли он в увеличении веса?).Вы также можете прочитать статью с объяснением калорий, чтобы узнать больше о калорийном балансе и о том, как он является определяющим фактором вашего веса.

Ладно, ладно, значит, вы все еще хотите знать, как можно увеличить метаболизм? Ответ на этот вопрос довольно прост ... Чтобы увеличить ваш метаболизм (например, BMR ), вам необходимо увеличить мышечную массу. Мышцы сжигают калории, пока вы находитесь в состоянии покоя, и поэтому являются фактором, влияющим на ваш BMR . Хотя существует некоторая путаница в отношении точного количества калорий, сжигаемых мышцами, наиболее убедительные доказательства, кажется, указывают на то, что каждый фунт мышцы на вашем теле добавляет примерно 5 калорий в день к вашему BMR (вы можете узнать больше об этой теме здесь : Миф о мышцах и скорости обмена веществ).По мере того как вы становитесь старше, ваша мышечная масса постепенно уменьшается, а значит, и ваш метаболизм. Этому эффекту можно противодействовать, приняв программу тренировок с отягощениями для поддержания и / или увеличения мышечной массы. Не знаете, как нарастить мышцы? Прочтите нашу статью «Как накачать мышцы», чтобы узнать основы.

Однако имейте в виду, что повышение метаболизма за счет увеличения мышечной массы не будет решением ваших задач по снижению веса и / или поддержанию веса. Тренировки с отягощениями для увеличения мышечной массы, безусловно, очень полезны с точки зрения общего здоровья тела, и поэтому они настоятельно рекомендуются как компонент любого фитнес-плана, но что касается вашего метаболизма, учтите следующее:

Предположим, вы приняли программу тренировок с отягощениями и сумели увеличить общую мышечную массу на 5 фунтов.Это потребует значительного количества времени и усилий, и, хотя это, безусловно, рекомендуется и заслуживает внимания с точки зрения вашего общего состояния здоровья, с чисто метаболической точки зрения конечным результатом будет увеличение вашего BMR на 5 фунтов x 5. калорий на фунт • день = 25 калорий в день. Поскольку в одном фунте жира 3500 калорий, это означает, что ваш повышенный метаболизм позволит вам сжигать дополнительные 25 калорий в день x 30 дней / месяц x 1 фунт жира / 3500 калорий =.214 фунтов жира в месяц в состоянии покоя. Итак, если подвести итог, если вы увеличите свою мышечную массу на 5 фунтов, это увеличит ваш метаболизм, так что вы сможете сжигать примерно дополнительную пятую фунта жира в месяц.

Как видите, с точки зрения метаболизма окупаемость ваших затрат времени и энергии на приобретение новой мышечной массы не столь велика. В заключение, вы должны теперь лучше понять не только метаболизм и то, как он определяет ваши энергетические потребности, но и то, как его регулирование , а не является решением ваших усилий по снижению веса и / или поддержанию веса.

.

Метаболизм и энергетика | Блог HealthEngine


Что такое метаболизм?

Метаболизм в основном относится ко всем химическим реакциям в организме. используется для выработки энергии . Это включает в себя сложный набор процессов, которые превращают топливо в специализированные соединения, заряженные энергией. В организме главный конечный агент для производства энергии называется аденозинтрифосфатом (АТФ).Когда АТФ расщепляется или используется клетками, выделяется огромное количество энергии. Эта энергия необходима клеткам для роста и деления, синтеза важных соединений, для сокращения мышц и множества других важных функций.

Метаболизм , таким образом, производит энергию для выполнения всех функций различных тканей в организме. Метаболизм работает путем расщепления пищевых продуктов или соединений в организме на более мелкие компоненты. Затем они могут вступать в особые реакции с образованием АТФ.Оставшиеся компоненты перерабатываются организмом и используются для восстановления исходных соединений.


Источники энергии

В организме есть три основных типа молекул, которые оно использует для получения энергии:

  • Углеводы: Это соединения сахарного типа в организме. Углеводы поступают из таких продуктов, как хлеб, крупы, картофель, фрукты и сахаросодержащие продукты или напитки. Когда углеводы перевариваются в желудочно-кишечной системе, они расщепляются на более мелкие молекулы, такие как глюкоза (простой сахар).Основными местами хранения углеводов в организме являются печень и мышцы.
  • Липиды: Это в основном относится к жирам (таким как холестерин) из рациона или хранящимся в жировой ткани (другими словами, в жировой ткани). Липиды для получения энергии расщепляются на более мелкие компоненты, называемые жирными кислотами. Следовательно, липиды - это просто цепочки жирных кислот, соединенных вместе.
  • Белки: Они составляют почти три четверти всех твердых веществ в организме.Таким образом, белки являются основными структурными компонентами организма. Они состоят из более мелких агентов, называемых аминокислотами, которые считаются строительными блоками белков. Белок присутствует в диете в таких продуктах, как мясо, яйца, орехи и молочные продукты.

В целом, углеводов образуют основной источник энергии для организма. Они наиболее эффективны при производстве АТФ или энергии (что означает, что они производят намного больше АТФ на количество разложенного топлива). Организм сначала расщепляет углеводы, затем жиры и, наконец, белки, только если два других топлива истощены.Это важно, поскольку белки, как правило, менее эффективны при выработке энергии. Кроме того, белки выполняют несколько важных функций, поэтому в случае их разрушения несколько систем могут выйти из строя.

Чтобы проиллюстрировать пример, в случае голодания в организме будет меньше доступных углеводов, поэтому начнется расщепление жировых запасов в организме. Как только все доступные запасы углеводов и жира будут исчерпаны, организм начнет расщеплять белки, чтобы обеспечить энергию.

На схеме ниже представлены основные источники энергии тела.Ферменты расщепляют их на более мелкие частицы. Эти небольшие углеродные цепочки могут затем попасть по особым путям для выработки энергии (обсуждается ниже).


Аэробный метаболизм

Аэробный метаболизм относится к метаболическим процессам, которые происходят в присутствии кислорода. Кислород действует как окислитель при сгорании различных видов топлива. Происходят особые реакции, которые в конечном итоге приводят к тому, что кислород принимает электроны (маленькие отрицательно заряженные частицы).Это вызывает высвобождение энергии и производство АТФ. Продукты жизнедеятельности - это вода и углекислый газ, которые легко выводятся из организма. Углеводы - основное топливо, используемое для аэробного метаболизма.

В отсутствие кислорода некоторые реакции невозможны. Другой процесс происходит с участием пировиноградной кислоты, которая также приводит к выработке АТФ. Эти механизмы позволяют клеткам выжить еще несколько минут, когда они лишены кислорода. Анаэробный метаболизм вызывает накопление молочной кислоты.Кроме того, это менее эффективный способ производства энергии. На одну молекулу исходного топлива образуется меньше АТФ.


Углеводный обмен

Когда углеводов расщепляются в кишечнике, они превращаются в более мелкие простые сахара, которые могут всасываться. Глюкоза является основным производимым агентом. Глюкоза попадает в клетки и либо сразу же расщепляется для производства энергии, либо превращается в гликоген (форма хранения глюкозы). Основные запасы гликогена в организме находятся в печени и мышцах.При необходимости эти источники можно использовать для получения энергии.

Гликоген расщепляется, чтобы воспроизвести глюкозу . Глюкоза претерпевает ряд реакций, чтобы в конечном итоге произвести АТФ. Эти реакции зависят от адекватного поступления кислорода и глюкозы. Если кислорода не хватает, глюкоза может расщепляться другим набором реакций, как описано выше. Однако, если глюкозы не хватает, организм будет использовать другие источники энергии для получения энергии.

Метаболизм глюкозы включает следующие этапы:

  • Гликолиз: В основном это относится к расщеплению глюкозы на вещество, называемое пировиноградной кислотой.В результате этой реакции образуется пара молекул АТФ.
  • Цикл Кребса: Пировиноградная кислота входит в цикл Кребса, превращаясь в ацетил-КоА. Это снова серия реакций, которая приводит к расщеплению топлива на диоксид углерода и воду. Это дает больше полезной энергии. Исходное соединение регенерируется, поэтому цикл может продолжаться. Цикл Кребса происходит в митохондриях клеток. Это небольшие органы овальной формы с двойной мембраной, маленькие органы клеток, которые действуют как электростанции клеток.
  • Окислительное фосфорилирование: Во время цикла Кребса большая часть потенциальной энергии передается в виде электронов другому соединению, называемому НАД. Это нарушается в цепи переноса электронов. Происходит цепочка реакций, когда электроны передаются следующему соединению в очереди. Последним агентом, принимающим электроны, является кислород. Этот процесс генерирует много энергии, которая превращается в АТФ.


Липидный обмен

Липиды - это в основном жиры в организме, которые включают холестерин, триглицериды и фосфолипиды.Основными их компонентами являются жирные кислоты, которые выделяются при расщеплении липидов. Жирные кислоты всасываются через кишечник и попадают через лимфатическую систему. Жиры могут использоваться для получения энергии или могут храниться в жировой ткани. Метаболизм липидов включает следующие процессы:

  • Липолиз: Это относится к расщеплению жиров на их жирные кислоты и другие компоненты. Некоторые из этих агентов могут вступать непосредственно в цикл Кребса для окисления.Триглицериды расщепляются на жирные кислоты и глицерин. Последний превращается в пировиноградную кислоту, которая может войти в цикл Кребса.
  • Бета-окисление: Это относится к распаду жирных кислот в митохондриях. В результате этого процесса образуется АТФ, а также ацетил-КоА, который может вступать в цикл Кребса и производить больше энергии.

Липидный обмен эффективен с точки зрения производства АТФ. Однако липиды не растворяются в крови, поэтому доступ к их запасам может быть затруднен.Следовательно, на них не полагаются для производства большого количества АТФ за короткое время, а скорее используются, когда запасы углеводов ограничены.


Кетоз

Кетоз относится к повышенной концентрации кетонов тел в крови. Наиболее распространенным производимым кетоном является уксусная кислота . Это вызвано метаболизмом преимущественно жиров при отсутствии достаточного углеводного обмена. Таким образом, это признак голодания, сахарного диабета (поскольку инсулин не может транспортировать глюкозу в клетки) и иногда возникает, когда диета почти полностью состоит из жиров.

Когда углеводы недоступны для получения энергии, организм переключается на метаболизм жирных кислот . Организм берет их из жировой ткани (жировые запасы тела). Образующиеся жирные кислоты могут быть расщеплены для получения энергии или могут быть преобразованы в кетоновые тела в печени. Некоторые кетоны могут выделяться с дыханием и придавать ему сладкий запах (ацетоновое дыхание).


Обмен белков

Тело состоит из большого количества белков с различными структурами и функциями.Основной компонент белков - аминокислоты. Примерно 20 различных аминокислот составляют строительные блоки всех белков. Аминокислоты подразделяются на незаменимые (это означает, что они необходимы в диете, поскольку организм не может их синтезировать) и несущественные (что означает, что организм может вырабатывать их при необходимости).

Правильный баланс аминокислот необходим для синтеза всех важных белков. Когда белки перевариваются, связи между аминокислотами разрываются, и они высвобождаются.Обычно аминокислоты перерабатываются и используются для производства новых белков. Однако, если источники энергии ограничены, аминокислоты можно использовать для выработки энергии. Это должно происходить только тогда, когда запасы энергии углеводов и жиров истощаются, поскольку белки составляют несколько важных структур в организме. Если они интенсивно метаболизируются, это может нарушить функцию тканей.

В обмене белков происходят следующие процессы:

  • Дезаминирование: Первым шагом в расщеплении аминокислот является удаление аминогруппы (части аминокислотной структуры, содержащей азот и водород).Аммиак образуется в результате этого процесса, который печенью превращается в мочевину. Затем мочевина может выводиться с мочой. Аминокислота превращается в соединение, называемое кетокислотой, которое может вступать в цикл Кребса.
  • Окисление аминокислот: Это относится к расщеплению кетокислот и образованию АТФ, подобно ацетил-КоА в углеводном и липидном обмене. Количество АТФ, образующегося в результате метаболизма белков, немного меньше, чем метаболизм глюкозы для эквивалентных масс.


Последствия потери веса

Некоторые диеты используют вышеуказанные принципы метаболизма для снижения веса . Чтобы похудеть, ваше тело должно сжигать больше калорий (посредством упражнений), чем требуется из рациона. Некоторые диеты ограничивают общее количество калорий, что, очевидно, приведет к потере веса, поскольку будут использованы запасы энергии тела. Другие диеты работают, пытаясь изменить нормальный баланс между метаболизмом углеводов, липидов и белков. Помните, что организм сначала сжигает углеводы, а затем жиры и белки, только когда два других истощены.Поэтому, если углеводы в рационе ограничены, организм начнет сжигать жировые отложения. Низкокалорийные диеты (LCD) и программы замены еды, такие как диета Тони Фергюсона, работают именно по этому механизму.


Статья любезно просмотрена:

Группа по интересам DAA WA по онкологии
и
Food4Health (Helen Baker Dietitian-APD)

Дополнительная информация


Для получения дополнительной информации о фитнесе и физических упражнениях, включая растяжки, типы упражнений, восстановление после упражнений и упражнения с нарушениями здоровья, а также некоторые полезные видеоролики см. Фитнес и упражнения.

Для получения дополнительной информации о питании, включая информацию о типах и составе продуктов, питании и людях, условиях, связанных с питанием, а также диетах и ​​рецептах, а также некоторых полезных видео и инструментах, см. Питание.

Для получения дополнительной информации об ожирении, медицинских и социальных проблемах, методах снижения веса, а также о некоторых полезных инструментах см.
Ожирение и потеря веса .

Список литературы

  1. Fine EJ, Feinman RD. Термодинамика диет для похудения. Нутр Метаб (Лондон) . 2004; 1 (1): 15. [Аннотация | Полный текст]
  2. Guyton AC, зал JE. Учебник медицинской физиологии (10-е издание). Эдинбург: компания WB Saunders; 2000. [Книга]
  3. Джонсон Л. Основная медицинская физиология (2-е издание). Филадельфия, Пенсильвания: Липпинкотт Уильямс и Уилкинс; 1998. [Книга]
  4. Martini F, Обер WC.Основы анатомии и физиологии (5-е издание). Нью-Джерси, Нью-Джерси: Прентис-Холл; 2001. [Книга]

.

Смотрите также

 
 
© 2020 Спортивный клуб "Канку". Все права защищены.